Adaptation of Tandem HMMs for Non-Speech Audio Event Detection

Mark Hasegawa-Johnson, Xiaodan Zhuang, Xi Zhou, Camille Goudeseune, and Thomas Huang

These slides: http://www.isle.uiuc.edu/slides/2009/Hasegawa-Johnson09ASA2.pdf

ASA Spring Meeting, May 21, 2009

A D M 4 目 M 4 日 M 4 1 H 4

Outline

1 Introduction: Task Definitions

2 Discriminative Feature Selection for Acoustic Event Detection

- 3 Discriminative Feature Transform for Toy Data
 - Simultaneous Optimization of NN and HMM Parameters

▲日▼▲□▼▲□▼▲□▼ □ のので

- Fun With Spurious Maxima
- SMLT+GMM for Phone Classification

4 Conclusions

Task Definitions

Task #1: Acoustic Event Detection

- Detect non-speech acoustic events (door slam, chair movement, paper shuffle) in a meeting room
- What happened when?

Task #2: Speech Phone Classification

- Given an acoustic spectrum x_i , specify the phone label y_i
- A heavily-studied problem, therefore the baselines are well understood

A D M 4 目 M 4 日 M 4 1 H 4

Task #1: Non-Speech Acoustic Event Detection

Motivation

"Activity detection and description is a key functionality of perceptually aware interfaces working in collaborative human communication environments... detection and classification of acoustic events may help to detect and describe human activity..." (CLEAR-AED Task Brief)

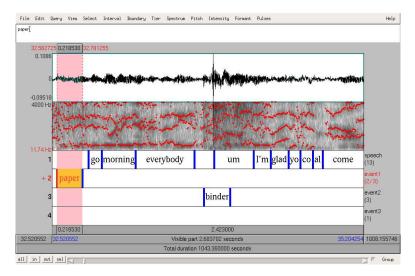
Difficulties

- Negative SNR (speech is "background noise")
- Unknown spectral structure
- Different spectral structure for each event type

A D M 4 目 M 4 日 M 4 1 H 4

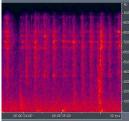
Introduction: Task Definitions

Difficulty #1: Negative SNR

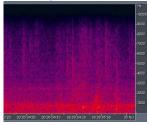


Difficulty #2: Unknown Spectral Structure

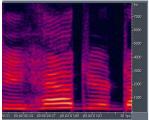
Key Jingle



Footsteps



Speech



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Discriminative Feature Selection for AED Zhuang et al., ICASSP 2008

- Problem: what acoustic features are relevant for detecting non-speech acoustic events?
- Input: $(x_i \in \Re^D)$ includes many acoustic features invented for speech processing (MFCC, PLP, energy, ZCR)
- **Output:** $(f_i \in \Re^d)$ selects the most useful features:

$$f_i = W x_i$$

where $W^T = [w_1, \ldots, w_K]$, and w_k is an indicator vector (only one non-zero element)

■ Hidden Markov Modeling: the label sequence $Y^* = [y_1^*, ..., y_N^*]$, $y_i \in \{\text{keyjingle, footstep}, ...\}$ is chosen by a hidden Markov model observing $F = [f_1, ..., f_N]$:

$$Y^* = \arg \max p(F|Y)p(Y)$$

Bayes Error Rate

Zhuang et al., ICASSP 2008

Bayes Error Rate

Let w_k be an indicator vector (all zeros except for one element). The Bayes-optimal error rate of a classifier observing feature $w_k^T x$ is

$$P(\text{error}) = \int \int P\left(y \neq \arg\max p(w_k^T x, y)\right) dy dx$$

Bayes Error Rate Approximated on a Database

$$\mathcal{F}(w_k) = \frac{1}{N} \sum_{i=1}^{N} \delta\left(y_i \neq \arg\max p(w_k^T x_i, y_i)\right)$$

▲日▼▲□▼▲□▼▲□▼ □ のので

Feature Selection Algorithms

Hard-Bayes-Error Feature Selection

For k = 1, ..., K, Choose the indicator vector w_k (w_k is all zeros except for one nonzero element) to minimize

$$\mathcal{F}(w_k) = \frac{1}{N} \sum_{i=1}^{N} \delta\left(y_i \neq \arg\max p(w_k^T x_i, y_i)\right)$$

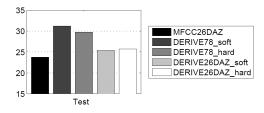
Soft-Bayes-Error Feature Selection

For k = 1, ..., K, Choose the indicator vector w_k (w_k is all zeros except for one nonzero element) to minimize

$$\mathcal{F}_{\mathcal{S}}(w_k) = \frac{1}{N} \sum_{i=1}^{N} \operatorname{rank} \left(y_i \left| w_k^T x_i \right) \right)$$

Acoustic Event Detection Results

Zhuang et al., ICASSP 2008



- MFCC26DAZ = 26 Mel-frequency cepstral coefficients + deltas + acceleration
- DERIVE26DAZ = 26 Derived features + deltas + acceleration
- DERIVE78 = 78 Derived features

Discriminative Feature Transform for Toy Data

Discriminative Feature Transform

Work in progress...

- Problem: what projection of the acoustic spectrogram is relevant for recognizing non-speech acoustic events?
- **Output:** $(f_i \in \Re^d)$ selects the most useful features:

$$f_i = \sum_{k=1}^{K} c_k \sigma(w_k^T x_i)$$

where $c_k \in \Re^d$ and $w_k \in \Re^D$ are arbitrary real-valued weight vectors, and $\sigma(z) = 1/(1 + e^{-z})$.

■ Hidden Markov Modeling: the label sequence $Y^* = [y_1^*, ..., y_N^*], y_i \in \{\text{keyjingle, footstep}, ...\}$ is chosen by a hidden Markov model observing $F = [f_1, ..., f_N]$:

$$Y^* = \arg \max p(F|Y)p(Y)$$

The Baum-Welch Algorithm

Hidden Markov model parameters are trained to maximize the expected log likelihood, with expectation over the unknown state sequence $Q = [q_1, \ldots, q_N]$

$$\mathcal{F} = E_Q \{\log p(F, Q)\}$$
$$\mathcal{F} = -\frac{1}{2} \sum_{i=1}^N \sum_q p(q_i = q | F, Y) (f_i - \mu_q)^T \Sigma_q^{-1} (f_i - \mu_q) - \dots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Baum-Welch Back-Propagation

The neural network can be trained, using standard gradient descent methods, in order to minimize \mathcal{F} . For example,

$$f_i = \sum_{k=1}^{K} c_k \sigma(w_k^T x_i)$$

$$\frac{\partial \mathcal{F}}{\partial c_k} = \sum_{i=1}^{N} \sum_{q} p(q_i = q | F) \left(\frac{\partial \mathcal{F}}{\partial f_i} | q_i = q \right) \left(\frac{\partial f_i}{\partial c_k} \right)$$
$$= \sum_{i=1}^{N} \sum_{q} p(q_i = q | F) \Sigma_q^{-1} (\mu_q - f_i) \sigma(w_k^T x_i)$$

The Problem of Spurious Maxima

- \blacksquare It is always possible to train a mixture Gaussian so that $\mathcal{F}=\infty$
 - Solution: Give one of the Gaussians a zero variance ($\Sigma_q = 0$)
 - This is called "over-training"
- In Baum-Welch Back-Propagation, the same result is obtained for $\|c_k\| \to 0$

Solution: require $||c_k|| = 1$, or more generally, $\left\|\frac{\partial f_i}{\partial x_i}\right\| = 1$

Methods for Avoiding Spurious Maxima

Constrained optimization: maximize

$$\mathcal{L} = \mathcal{F} + \sum_k \lambda_k (\|c_k\| - 1)$$

with Lagrange multipliers λ_k chosen so that $\|c_k\| = 1$

Symplectic Maximum Likelihood Transform (SMLT, Omar and Hasegawa-Johnson, 2004): replace the neural network with one that computes a *volume preserving* transform:

$$\left|\frac{df}{dx}\right| = 1$$

where $J_f(x)$ is the Jacobian of the transform

Discriminative Feature Transform for Toy Data

SMLT+GMM for Phone Classification

The Reflecting Symplectic Transform Omar and Hasegawa-Johnson, 2004

Divide x and y arbitrarily into equal-length sub-vectors, $x^T = [x_1^T, x_2^T]$, $y^T = [y_1^T, y_2^T]$. Interpret as follows:

- x₁ is a vector of object positions
- x₂ is a vector of velocities
- $V(x_2)$ is a scalar called the "kinetic energy"
- $T(y_1)$ is a scalar called the "potential energy"
- Then the following transform is volume-preserving:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 - \nabla_{x_2} V \\ x_2 - \nabla_{y_1} T \end{bmatrix} = \begin{bmatrix} x_1 - g_1(x_2) \\ x_2 - g_2(x_1 - g_1(x_2)) \end{bmatrix}$$

■ g₁(x₂) and g₂(y₁) must be irrotational. Easiest way to guarantee this: train V(x₂) and T(y₁) directly, using Baum-Welch back-propagation

Discriminative Feature Transform for Toy Data

SMLT+GMM for Phone Classification

SMLT+GMM for Phone Classification

Omar and Hasegawa-Johnson, 2004

- Compute phone label y_i given MFCC cepstrum x_i
- Symplectic maximum likelihood transform (SMLT) computes f_i(x_i)
- Maximum likelihood linear transform (MLLT) computes f_i = Wx_i
- Gaussian mixture model (GMM) computes $p(f_i|y_i)$
- Database: TIMIT

Features	Classifier	Accuracy
MFCC	GMM	73.7%
MLLT	GMM	74.6%
SMLT	GMM	75.6%

Non-speech acoustic event spectra \neq speech spectra

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- Non-speech acoustic event spectra \neq speech spectra
- Acoustic event detection benefits from discriminative feature selection

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Non-speech acoustic event spectra \neq speech spectra
- Acoustic event detection benefits from discriminative feature selection

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Soft-Bayes-Error selection is better than Hard-Bayes-Error selection

- Non-speech acoustic event spectra \neq speech spectra
- Acoustic event detection benefits from discriminative feature selection

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Soft-Bayes-Error selection is better than Hard-Bayes-Error selection
- Discriminative feature selection can be generalized to discriminative feature transformation

- Non-speech acoustic event spectra \neq speech spectra
- Acoustic event detection benefits from discriminative feature selection
- Soft-Bayes-Error selection is better than Hard-Bayes-Error selection
- Discriminative feature selection can be generalized to discriminative feature transformation
- SMLT (a form of discriminative feature transformation) outperforms MFCC and MLLT for phoneme classification in TIMIT

Thank You!

http://www.isle.uiuc.edu/slides/2009/Hasegawa-Johnson09ASA2.pdf

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○