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Task Definitions

Task #1: Acoustic Event Detection

Detect non-speech acoustic events (door slam, chair
movement, paper shuffle) in a meeting room

What happened when?

Task #2: Speech Phone Classification

Given an acoustic spectrum xi , specify the phone label yi

A heavily-studied problem, therefore the baselines are well
understood
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Task #1: Non-Speech Acoustic Event Detection

Motivation
“Activity detection and description is a key functionality of
perceptually aware interfaces working in collaborative human
communication environments. . . detection and classification of
acoustic events may help to detect and describe human
activity. . . ” (CLEAR-AED Task Brief)

Difficulties

Negative SNR (speech is “background noise”)

Unknown spectral structure

Different spectral structure for each event type
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Difficulty #1: Negative SNR
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Difficulty #2: Unknown Spectral Structure

Key Jingle Footsteps Speech
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Discriminative Feature Selection for Acoustic Event Detection

Discriminative Feature Selection for AED

Zhuang et al., ICASSP 2008

Problem: what acoustic features are relevant for detecting
non-speech acoustic events?
Input: (xi ∈ ℜD) includes many acoustic features invented
for speech processing (MFCC, PLP, energy, ZCR)
Output: (fi ∈ ℜd) selects the most useful features:

fi = Wxi

where W T = [w1, . . . ,wK ], and wk is an indicator vector
(only one non-zero element)
Hidden Markov Modeling: the label sequence
Y ∗ = [y∗

1 , . . . , y∗

N ], yi ∈ {keyjingle, footstep, . . .} is chosen by
a hidden Markov model observing F = [f1, . . . , fN ]:

Y ∗ = arg max p(F |Y )p(Y )
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Bayes Error Rate

Zhuang et al., ICASSP 2008

Bayes Error Rate

Let wk be an indicator vector (all zeros except for one element).
The Bayes-optimal error rate of a classifier observing feature wT

k x

is

P(error) =

∫ ∫

P
(

y 6= arg max p(wT
k x , y)

)

dydx

Bayes Error Rate Approximated on a Database

F(wk) =
1

N

N
∑

i=1

δ
(

yi 6= arg max p(wT
k xi , yi )

)
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Feature Selection Algorithms

Hard-Bayes-Error Feature Selection

For k = 1, . . . ,K , Choose the indicator vector wk (wk is all zeros
except for one nonzero element) to minimize

F(wk) =
1

N

N
∑

i=1

δ
(

yi 6= arg max p(wT
k xi , yi )

)

Soft-Bayes-Error Feature Selection

For k = 1, . . . ,K , Choose the indicator vector wk (wk is all zeros
except for one nonzero element) to minimize

FS (wk) =
1

N

N
∑

i=1

rank
(

yi

∣

∣

∣
wT

k xi

)
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Acoustic Event Detection Results

Zhuang et al., ICASSP 2008

MFCC26DAZ = 26 Mel-frequency cepstral coefficients +
deltas + acceleration

DERIVE26DAZ = 26 Derived features + deltas + acceleration

DERIVE78 = 78 Derived features
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Discriminative Feature Transform for Toy Data

Discriminative Feature Transform

Work in progress. . .

Problem: what projection of the acoustic spectrogram is
relevant for recognizing non-speech acoustic events?

Output: (fi ∈ ℜd) selects the most useful features:

fi =
K

∑

k=1

ckσ(wT
k xi)

where ck ∈ ℜd and wk ∈ ℜD are arbitrary real-valued weight
vectors, and σ(z) = 1/(1 + e−z).

Hidden Markov Modeling: the label sequence
Y ∗ = [y∗

1 , . . . , y∗

N ], yi ∈ {keyjingle, footstep, . . .} is chosen by
a hidden Markov model observing F = [f1, . . . , fN ]:

Y ∗ = arg max p(F |Y )p(Y )
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Discriminative Feature Transform for Toy Data

Simultaneous Optimization of NN and HMM Parameters

The Baum-Welch Algorithm

Hidden Markov model parameters are trained to maximize the
expected log likelihood, with expectation over the unknown state
sequence Q = [q1, . . . , qN ]

F = EQ {log p(F ,Q)}

F = −
1

2

N
∑

i=1

∑

q

p(qi = q|F ,Y )(fi − µq)
TΣ−1

q (fi − µq) − . . .



Non-Speech Audio Events

Discriminative Feature Transform for Toy Data

Simultaneous Optimization of NN and HMM Parameters

Baum-Welch Back-Propagation

The neural network can be trained, using standard gradient
descent methods, in order to minimize F . For example,

fi =
K

∑

k=1

ckσ(wT
k xi)

∂F

∂ck

=
N

∑

i=1

∑

q

p(qi = q|F )

(

∂F

∂fi
|qi = q

)(

∂fi

∂ck

)

=

N
∑

i=1

∑

q

p(qi = q|F )Σ−1
q (µq − fi )σ(wT

k xi)
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Discriminative Feature Transform for Toy Data

Fun With Spurious Maxima

The Problem of Spurious Maxima

It is always possible to train a mixture Gaussian so that
F = ∞

Solution: Give one of the Gaussians a zero variance (Σq = 0)
This is called “over-training”

In Baum-Welch Back-Propagation, the same result is obtained
for ‖ck‖ → 0

Solution: require ‖ck‖ = 1, or more generally, ‖ ∂fi
∂xi

‖ = 1
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Discriminative Feature Transform for Toy Data

Fun With Spurious Maxima

Methods for Avoiding Spurious Maxima

Constrained optimization: maximize

L = F +
∑

k

λk(‖ck‖ − 1)

with Lagrange multipliers λk chosen so that ‖ck‖ = 1

Symplectic Maximum Likelihood Transform (SMLT, Omar
and Hasegawa-Johnson, 2004): replace the neural network
with one that computes a volume preserving transform:

∣

∣

∣

∣

df

dx

∣

∣

∣

∣

= 1

where Jf (x) is the Jacobian of the transform
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SMLT+GMM for Phone Classification

The Reflecting Symplectic Transform
Omar and Hasegawa-Johnson, 2004

Divide x and y arbitrarily into equal-length sub-vectors,
xT = [xT

1 , xT
2 ], yT = [yT

1 , yT
2 ]. Interpret as follows:

x1 is a vector of object positions

x2 is a vector of velocities

V (x2) is a scalar called the “kinetic energy”

T (y1) is a scalar called the “potential energy”

Then the following transform is volume-preserving:

[

y1

y2

]

=

[

x1 −∇x2V

x2 −∇y1T

]

=

[

x1 − g1(x2)
x2 − g2(x1 − g1(x2))

]

g1(x2) and g2(y1) must be irrotational. Easiest way to
guarantee this: train V (x2) and T (y1) directly, using
Baum-Welch back-propagation
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SMLT+GMM for Phone Classification

SMLT+GMM for Phone Classification

Omar and Hasegawa-Johnson, 2004

Compute phone label yi given MFCC cepstrum xi

Symplectic maximum likelihood transform (SMLT) computes
fi(xi )

Maximum likelihood linear transform (MLLT) computes
fi = Wxi

Gaussian mixture model (GMM) computes p(fi |yi )

Database: TIMIT

Features Classifier Accuracy

MFCC GMM 73.7%
MLLT GMM 74.6%
SMLT GMM 75.6%
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Conclusions

Non-speech acoustic event spectra 6= speech spectra

Acoustic event detection benefits from discriminative feature
selection

Soft-Bayes-Error selection is better than Hard-Bayes-Error
selection

Discriminative feature selection can be generalized to
discriminative feature transformation

SMLT (a form of discriminative feature transformation)
outperforms MFCC and MLLT for phoneme classification in
TIMIT
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Conclusions

Thank You!
http://www.isle.uiuc.edu/slides/2009/Hasegawa-Johnson09ASA2.pdf
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