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Abstract 
 
      The technical specifications of CANVAS, the Collaborative Advanced Navigation Virtual 
Art Studio, were described in a paper presented at the EVA 2005 conference in Firenze [1].  
We take this opportunity to describe the application framework that currently exists to 
allow artists to develop electronic media projects in CANVAS and how the increasing 
number of 3-D datasets being gathered by museums can be displayed in CANVAS.  We also 
describe a case study of the issues involved in creating one narrative media art project 360 
within the confines of the existing toolsets available to potential users of CANVAS. 
 
     When we set out to create an immersive visualization space for museum galleries, our 
experience with large-scale, complex hardware and software intensive virtual reality 
displays environments told us that every modification to simplify the system for artists to 
create applications or stabilize the display for audiences to interact singly or in groups 
carried significant baggage that would affect multiple aspects of the resultant experience.     
The cost and complexity of a virtual environment can be reduced in many ways:  smaller 
and fewer displays, simpler or omitted motion tracking, simpler user input devices, 
simpler audio hardware.  Naturally, issues arise when designing a VR application for 
simplified hardware, or porting one to simpler hardware than what it originally used in 
legacy applications. 
     Display hardware can be much of a virtual environment’s total cost, so it is an obvious 
choice for economizing.  Omitting screens on the ceiling or floor also simplifies 
installation in rooms with no oversize ceiling.  Applications often do not need ceiling or 
floor screens, since people find it more comfortable to move neck and eyes horizontally.  
Horizontal field of view is also more critical than vertical for VR applications.  A 
visualization that lets the user walk entirely around an object, viewing it from all angles, 
needs to be redesigned for a three-wall 270-degree display.  For a single-wall display the 
redesign may even replace walking around with rotating the object in place “behind” the 
wall, like a keyboard-and-mouse interface.  A physically smaller display, like a two-
meter rather than a three-meter room, may suffer more from projector “hot spots” on the 
screen as the user walks around.  This varying brightness may be compensated for by 
reducing the application’s dependence on visual dynamic range.  (This may already have 
been done, since projectors have less dynamic range and color sensitivity than desktop 
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displays.)  However, by reducing the size of the viewable space, one converts what was a 
room-sized experience into a less interactive experience, a price normally too high to pay. 
     Motion tracking can be another expensive part of a virtual environment.  A tethered 
system costs less than a wireless system, but in practice it forbids a display that entirely 
surrounds the user.  In other words, it enforces a “front” orientation in the environment.  
Applications intended for a fully-immersive cube display (astronomy, architectural 
walkthroughs) will need different user controls when the user generally faces one 
direction instead of turning freely.  Conversely, applications which began on a desktop 
computer will port more easily.  In CANVAS, as the design presupposed a multi-user 
experience, so individual viewer tracking is considered a nuisance as a rule, but is 
permitted in the basic system design for exhibits which might benefit from individual 
spatial navigation. 
     For user controls (or “user interface”) most cave-like environments use a wand.  Early 
wands included only a few controls, i.e., buttons and a joystick.  Since then, one trend is 
to use handheld controllers from video games, “gamepads.”  These have several 
joysticks, sliders, and perhaps a dozen buttons.  An application designed for such a rich 
input device may need serious redesign for a simpler wand.  The informal literature on 
videogame design may be helpful here, particularly discussions of porting games from a 
desktop computer’s large keyboard to the dozen keys of custom “platform” hardware like 
PlayStation or Nintendo.  Game designers prefer dropping features to adding submenus 
and other baroque command structure.  Another trend in wands is simplification:  a 
motion tracker with only one button (demanded by Macintosh users?).  Porting a one-
button application to a more powerful motion-tracked gamepad seems trivial.  But we 
find that the gamepad’s extra nonfunctional buttons and joysticks perplex users, 
particularly new users.  It may be worth buying a second, simpler, wand.  It may even be 
worth adding features so the extra buttons do something. 
     Removing motion tracking entirely from the wand is an extreme simplification.  Some 
would argue that this changes VR into just a large display.  Porting an application that 
used a tracked wand to such an environment is almost the same as porting to a desktop 
PC.  Generating 3DOF or 6DOF gestures from 2-D joysticks is awkward—just ask any 
CAD-software user.  CANVAS does not require or prevent multiple modalities of device 
tracking; a laser pointer is supported by aiming video cameras at the rear of the screens to 
track wavelength-filtered light, traditional pulsed-DC, AC or infrared trackers can be 
easily integrated if an exhibit benefits from the significant added cost of such devices. 
     Removing head-tracking can be far more tolerable than removing wand-tracking, 
though.  Head-tracking is missed most when the user manipulates objects rather than, say, 
navigating through a large world.  When several people are viewing a scene, head-
tracking may even be undesirable.  CANVAS permits the tracking of not only the viewer’s 
head but any number of one or multiple viewers hands, feet or torso if the deployed 
tracking system is so configured. 
     Spatialized sound is a significant sensory addition to an immersive space.  Audio 
sources can be tightly attached to positions in the virtual space for a head-tracked user 
wearing headphones.  Giving up head-tracked headphones, or equivalently having 
multiple persons, practically means that audio can be attached only to broad regions of 
space.  This is acceptable if the primary purpose of audio is confirming user commands 
or alerting the user to changes.  Loudspeakers, even an array of 4 or 8 loudspeakers, also 
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cannot compete with the precision of tracked headphones.  But they are much friendlier 
for a multi-user installation.  Even headphones which do not block outside sounds still 
discourage users from talking among each other. 
 
Syzygy – Middleware for CANVAS 
 
     While PC clusters are radically cheaper than special purpose VR hardware, they do 
have disadvantages, the most important of which is the added complexity of managing 
the system and writing software for it. Consequently, for a PC cluster to be a viable 
platform, special middleware must be created that will simplify both of these tasks. This 
paper describes one such solution, Syzygy, an open source middleware solution for PC 
cluster VR. While, in its initial incarnation, CANVAS runs a Syzygy cluster, we mention 
other software solutions for such an environment and note that the list grows as the 
popularity of immersive spaces crosses continents. We focus on three areas: a distributed 
operating system (Phleet) that helps applications running on the cluster cooperate the 
hardware and one another, low-level APIs for synchronizing graphics displays running on 
different computers, and high-level APIs for writing cluster applications.   
     Syzygy contains the Phleet distributed operating system that portably (across 
Windows, Linux, Mac OS X, and Irix) coordinates software running on our clusters. In 
this system, a central szgserver manages all the other Phleet-enabled software. In 
particular, it centralizes configuration of the system. Instead of having configuration files 
scattered on each computer, the szgserver stores all the information in a central database, 
and through the Phleet APIs, programs query that database over the network to configure 
themselves upon start-up. This is a substantial win for cluster administration, especially 
for Windows machines that are awkward to remotely administer. This configuration 
database is stored for each Phleet user, making the cluster a true multi-user environment 
with each person able to have her own data, executables, and application preferences.  
     Applications running in a cluster environment are really collections of individual 
programs (here called application components) that send data to one another over the 
network. Consequently, in addition to configuration, Phleet must also coordinate how 
application components connect to one another, for instance telling a component that 
wants to display graphics information the location of another component offering it. 
Furthermore, applications must start up and shut down in an orderly fashion. To enable 
portable remote execution, Phleet includes szgd, a daemon program that launches Syzygy 
executables in response to Phleet messages produced either by command line tools or one 
of Syzygy’s programming frameworks. As an application launches, it uses the Phleet API 
to scan the cluster, stopping services that it does not need (or that are incompatible with 
its operation) and starting services, such as sound players or input device drivers, it does 
need (using the szgd’s running on cluster nodes), along with launching any specific 
application components of its own.  In reverse, Phleet also allows for orderly application 
shut down, making sure all cluster resources are freed and that each application 
component exits cleanly. 
     When using a PC cluster for visualization, one of the most important considerations is 
how the displays will be synchronized. At the high end, the vertical refresh of each video 
signal occurs at the same instant using a process called genlocking, which is supported by 
high-end graphics cards. This is necessary for PC cluster active stereo, where a 3D image 
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is produced by alternating right eye and left eye images while the users wear LCD shutter 
glasses that blank their lenses in time with the video signal, making sure that the user’s 
right eye is covered when the left eye image is visible and vice-versa. However, genlock 
is not required for passive stereo, where the right and left eye images are simultaneously 
projected onto the same surface, with (say) different polarizations,  and users wear cheap 
filter glasses to make sure that each of their eyes sees only the appropriate image. Using 
this technology, a coherent stereo image can be seen across the whole cluster using very 
inexpensive consumer graphics cards. 
     In addition to genlock, we consider framelock, the property by which given 
corresponding frames of 3D graphics are displayed at the same time on the cluster nodes. 
This is important since different views of a scene (which is exactly what we see on the 
cluster nodes) can be drawn at different rates. Without framelock, upon (say) user 
navigation, the more quickly drawn views will move before the more slowly drawn, 
causing an objectionable tearing at the display boundaries. This is an application-level 
property (since only the application knows when it is going to produce another frame) as 
opposed to genlock, which concerns the video signal. Here, we can actually do a good 
enough job in software by creating a synchronization API (as exists in Syzygy) that 
operates over the cluster network. In this case, once each cluster node is ready to display 
its new frame, it communicates with the others and they all display them exactly when 
everyone is ready. This is not a perfect solution without genlock since the new frame will 
be displayed on the vertical refresh of the graphics card, implying that perfect 
synchronization requires genlock. However, practice shows that software framelock 
along with passive stereo produces good enough (actually quite good) results, and, when 
combined with its inexpensive nature, make this a winning technology combination for 
PC cluster visualization. 
     At a higher level, rendering synchronized images across the PC cluster requires 
synchronizing the data rendered on each PC in coordination with synchronizing when 
that data is rendered (as has been discussed already with genlock and framelock). This 
requirement reaches into application architecture. On the one hand, we can try to design 
an API that is transparent to the programmer. This method’s advantage, hiding the data 
synchronization from the programmer, is also its disadvantage, forcing the programmer 
to write to a particular API and preventing her from constructing clever (application-
specific) methods of sharing data. Consequently, with PC cluster visualization, it is 
important to have a range of options available: different tools will be more appropriate 
for different jobs. We first consider different ways data sharing can be made transparent 
to the programmer. Next, we discuss Syzygy’s distributed scene graph, followed by a 
description of its API for constructing distributed applications that explicitly handle the 
data sharing they require. 
     There are several different types of data that an API could transparently share. For 
instance, the raw pixels comprising the scene could be rendered centrally, sent across the 
network, and displayed on each cluster node. The APIs to do this are essentially found 
directly in the OS’s windowing subsystem and thus are straightforward to implement. 
However, this approach is undesirable in many circumstances because of the extremely 
large amount of pixel data and the very limited networking bandwidth between cluster 
nodes. It might make sense in special cases, such as distributed ray tracers, where the 
application is already sending pixels, but makes much less sense with an OpenGL 
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application, especially when the cluster it runs on has a slower network (as might very 
well be the case if we are trying to save money in cluster construction). 
     At a higher level, we could distribute the OpenGL commands themselves. Well-
known systems like Chromium take this approach. They modify the system OpenGL 
dynamic library to capture OpenGL commands, which are buffered and sent across the 
network for display by a specialized program. The advantage to this approach is that it 
works with any OpenGL program, but the disadvantage is that OpenGL is a very 
communications-intensive API, which implies that Chromium has the potential to 
severely stress the cluster network. Consequently, like in the previous case, this class of 
APIs demands a fast cluster network and is possibly liable to network bottlenecks. 
     At a higher level still, we can focus on sharing the semantics of a virtual world via a 
scene graph API. Here, all the information required to render the world is stored in a 
database (the scene graph), which the application modifies to manipulate objects, 
navigate around, or perform other tasks. Because the scene graph can be drawn 
continuously in a background thread (technically speaking, it is “retained mode” to 
OpenGL’s “immediate mode”), this style of API is ideally suited for interactive 
manipulation at an interpreter, like Python (as in the Syzygy distributed scene graph) or 
Smalltalk (as in Squeak). Freeform manipulation at the interpreter prompt allows rapid 
prototyping of virtual worlds and, thus, is a very valuable system property. To make a 
scene graph API transparently distributed, we must simply have the ability to transfer 
total scene graph state from one application to another and afterwards transfer any update 
messages. Normal application operation, then, just generates scene graph changes, which 
are potentially much smaller than the entire scene and, consequently, much easier on less 
powerful networks. Because of this, several well-known scene graphs APIs have been 
adapted for distributed virtual environments, where participants each work on a shared 
scene graph at geographically dispersed locations. For instance, Avango extends SGI’s 
Performer and Distributed Open Inventor extends (obviously enough) SGI’s 
OpenInventor. 
     Syzygy takes these ideas and adapts them to PC cluster graphics. The main difference 
between the PC clusters and distributed virtual environments is the greater level of 
synchronization required for the PC cluster case. Here, we must also be worried about 
when the updates are processed on the cluster nodes in addition to worries in the DVE 
case that each computer receive the same update stream. At each frame on each cluster 
node, we want the same updates to have been processed by their scene graphs. 
Consequently, the Syzygy distributed scene graph application synchronizes itself with the 
frames produced on the cluster nodes. As the nodes are drawing the next frame, the 
application buffers its scene graph updates. Once the nodes have all finished drawing the 
frame, they simultaneously display it and request the application send them the updates it 
has buffered. Each node now receives the same update sequence, which it applies to its 
local scene graph before beginning to draw the next frame. In this way, each node draws 
a view of the same world. 
     Sometimes it is easier to explicitly add data sharing to an application than to make the 
application use an available programmer-transparent API. For these cases, Syzygy offers 
its master/slave framework. Here, an instance of the application runs on each cluster 
node. These applications operate using a well-defined event loop. At the loop’s start, the 
master application instance processes data from input devices or other sources and 
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changes its internal state. The portion of application state that affects rendering is then 
automatically pulled from memory, packed into a message, and sent to the slave 
application instances. The slaves then unpack the message and use it to update their 
internal state. Everybody now draws the scene, synchronizing before displaying the 
frame, and then repeats the event loop. The programmer explicitly designates what part 
of application state is shared. This method often allows easy porting of existing 
applications to a cluster environment, given source code. 
 
Using CANVAS for Visualizing 3-D Data 
 
      In addition to electronic art created explicitly for CAVE™-like spaces [2], CANVAS  
has as a goal to be able to display and interact with complex 3-D (and higher 
dimensional) data sets, for example MRI, fMRI, CAT or camera-based scanned image 
data.  Our software for viewing sets of fMRI brain images uses volume rendering rather 
than a slicer plane, but it still uses texture maps.  The 3-D data is rendered on a stack of 
semitransparent parallel planes.  We orient the planes to face the user, no matter where in 
the immersive space they or the brain are.  Visual artifacts appear when the user moves 
inside the brain itself, but meaningful patterns are hard to see anyways from such 
viewpoints.  To view the Visible Human data [3], we first interpolated and down-sampled 
the 3-D data so it could fit in a PC's memory.  Much of this 600-line C++ program is 
devoted to building a semitransparent texture map from this data.  This texture map is 
applied to a large square "slicer plane" attached to the wand.  Lower-resolution texture 
maps are computed when moving the wand, to increase frame rate.      
    We designed a program for painting in space.  Moving the wand while holding one 
button leaves a trail drawn like a ribbon.  Holding another button erases any parts of a 
ribbon near the wand.  Its simplicity is compelling because the artist can work from any 
angle, even inside -- almost sculpting rather than painting.  Head-tracking is essential 
here.  We first wrote it in a few hundred lines of C++, using Standard Template Library 
containers to efficiently split and merge ribbons during erasing and drawing.  Avoiding 
fragmented ribbons is critical for display at high frame rates.  A recent port to Python did 
not shrink the code size, but simplifies maintenance of the software.  Most of the CPU 
use is in the OpenGL libraries, so this port did not reduce performance. 
 
Design in CANVAS versus Design for CANVAS 
 
     In fields such as product design, interior design, and architecture, the so far well-
known form of computer visualization, commonly called "computer-aided design" or 
CAD has been indispensable for more than two decades. As the computer hardware and 
software gets cheaper and better, and consumers, designers, manufacturers, and 
distributors get more savvy and sophisticated, the definition of CAD is about to take on 
new meanings.  A successful design on one hand is a vessel of bringing users designer's 
ingenuity in aesthetics and functionality, on the other hand is a good solution in finding a 
balance among manufacturing, marketing and consumers.  It is a very complicated 
process for one designer to work on, and is a major communication effort for a team or 
multiple teams in a cooperation setting. In design education, helping students to 
understand and practice in such a complicated process is also a major challenge. This is a 
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strong market demand that calls for variety of truly useful and efficient computer 
powered facilitating systems to be developed. 
     Because of its advantage in display and computing power, CANVAS as a visualization 
tool has remarkable potential.  In a virtual environment, the interpretation of CAD could 
be extended to using computer visualization and simulation as a tool to assist most, if not 
all, aspects of the design process.   In other words, computer visualization can be used not 
only to display the 3D appearance model of a design, but it can be helpful in cultivating a 
successful design concept starting from its research stage, option analysis, ideation, 
concept selection, manufacturing and costs evaluation, to usability and ergonomics 
simulation, marketing planning, and finally in the future, but certainly not the last step or 
the least important factors, social and environmental impact outlook.  A virtual 
environment such as the CANVAS can be a perfect workbench for such a job.  It will 
allow information from multiple links of the chain to be visualized and presented to a 
much larger audience/user group, and further more, it will enable every user to contribute 
input. It could potentially increase the speed of R&D process dramatically by bringing 
together the art and science of intuition and problem solving in design into every team 
member's arm's reach. 
     Other design related peripheral uses which could be seamlessly integrated into such an 
environment include remote collaboration, concept demonstration, and even visualized 
project management such as event scheduling and resource management.  It is a time and 
effort efficient way to exchange information and ideas within a design team, or to a 
student even an outsider such a client. A Syzygy-driven CANVAS allows users to 
navigate through 3-D models created in popular CAD programs.  In order to meet the 
needs of our design community, CANVAS will be constantly evolving, and being updated 
and redesigned by both the designers in this case who are also part of the end user group, 
as well as the computer scientists and hardware engineers, and thus ensure it is sound in 
functional, operational, and usability design.   
 
VRML - Virtual Reality Modeling Language in CANVAS 
 
     VRML is a 3D format especially well suited for CAVE-like environments, from the 
most elaborate six-surface, fully-immersive spaces to the purposely simplified 3-wall 
environment of CANVAS.  An artist is able to use VRML to create not only complex 
objects but also the world those objects inhabit as well as interactions between objects 
[4].  Compared to many other 3D tools, VRML was specifically designed to aid in the 
creation of and interaction with virtual environments [5].  Further adding to its usefulness 
is the fact that many pre-existing data sets can be easily converted for use in VRML-
ready environments [6]. 
     There is a long history (in technology standards) of VRML usage in the museum 
sciences.  Examples range from virtual specimens to virtual museum tours and 
exhibitions [7,8,9,10].  Archival projects have produced models which can be readily 
explored using VRML [11].  Data visualization is another task VRML handles well [12, 
13]. Thus, in a move towards the practical virtualization of a museum’s assets, VRML is 
an attractive option. 
     Taking VRML from its ‘native’ environment of a web browser on a desktop PC into 
the immersive environment of a CAVE only increases VRML’s effectiveness.  In the 

 7



same way that a CAVE enhances many other 3D applications, so does the immersion 
increase the presence one experiences when interacting with VRML worlds or models.  
Furthermore, a CAVE provides powerful methods for interacting with and navigating 
VRML datasets that are simply not available on desktop PCs. 
     In CANVAS, a CAVE powered by Syzygy, VRML duties are handled by VRMLView, 
an application developed to visualize data in the VRML (and related OpenInventor) 
format [14].  VRMLView allows the user to configure how the VRML data is loaded, 
both in terms of visual representation and spatial orientation, and additionally how the 
user wishes to interact with the world or object.  Navigation of the VRML world is 
handled by Syzygy’s Scene Graph architecture [15].  A user can interact with VRML 
objects in terms of rotating, translating or scaling the object freely.  VRMLView also 
supports the playback of any animations that may have been created in or for the world, 
such that a user could be automatically taken through a VRML scene. 
     Thus, VRML is a versatile tool for the creation of virtual worlds or models and 
CANVAS using Syzygy and VRMLView is a compelling environment in which to explore 
such worlds. 
 
PYTHON AND MORE 
 
     Scripting languages like Python [16], Perl [17], and Ruby [18] are easier to learn and 
faster to program in than traditional C or C++.  With these, we find that students without 
years of programming experience can prototype and design VR visualizations far more 
quickly.  In one semester, a student can then learn details about their problem domain and 
about VR, instead of mastering the intricacies of C++ programming. Even our seasoned 
programmers benefit from the Python bindings we have wrapped around Syzygy's C++ 
interface.  Faster programming improves the quantity of code, of course, but quality 
improves too.  Inevitably, the initial prototype changes dramatically over a few weeks as 
new ideas occur and the final design emerges.  Since less programming time is invested 
initially, the programmer is less reluctant to greatly rework or even abandon early 
designs.  A better design results.  Of course programs written in C and C++ tend to run 
faster (at a higher frame rate).  But CPUs have become so fast in recent years that this is 
rarely a practical concern.  CPU time is valuable, but not nearly as much so as 
programmer time. 
 
360, A Case Study 
 
     As described in [1], 360, a narrative art exhibit, is a three-walled, gallery-centered 
immersive room presentation of the life-stages of the romantic life of a couple.  In its 
initial showing at the Krannert Art Museum in August 2004, 360 contained a timeline of 
the couple meeting in a café, with the gallery viewer wearing stereo glasses seated at a 
real table within eye and earshot of the couple at a virtual table nearby.  Navigation 
through the life of the couple was afforded through a joystick.  The seated position of the 
viewer played off of the decision to have the three graphics computers draw all images 
and spatialized sounds from a fixed head position.  This initial exhibit involves MPEG-
compressed video within a series of viewer-selectable computer-generated 3-D scenes, 
but the guiding principal of this project was to not make decisions that limited the ability 
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to expand the scope of the project over time.  Even in the simple early stages of planning, 
it became obvious that this project would be a collaboration between artists and computer 
programmers. 
     At the first meeting of the multidisciplinary team formed to create 360, the artists 
presented ideas about the "look and feel" of the project, pointed out some of the aesthetic 
ideas they liked about previous immersive space applications – the textured, layered, 
somewhat murky backgrounds of the dance application, and presented a movie of a fly-
through of a computer-generated world; this world was full of interesting graphic icons, 
checkerboards, flying objects; it was a canned world, not generated on the fly, probably 
used Maya, and swept a camera through the model. The computer programmers in 
attendance noted that their world would be computed "on the fly" and thus could be much 
more dynamic than this world, more easily configurable, and more interactive, since our 
camera will be controlled in real time.      
The presentation of graphics materials was most helpful in determining what the look and 
feel of the project should be. Next, the accompanying narrative was explained, and then 
how the story may be presented was discussed, both in a logical and storytelling sense, 
and then in a more technical sense; i.e., the mechanics of displaying an animation and 
how the programmers will technically interact with the world.  At the end of the first set 
of meetings, media collection was deemed to be the responsibility of the artists; some 
would collect the graphics and textures, others would collect and edit sound and videos. 
Meanwhile, computer programmers would develop a framework for this world to sit in.  
Challenges later occurred with this approach as it was discovered that what an artist’s 
eyes sees in a finished video is significantly different than what appears in the 3-D world 
after going through the hardware and software that integrate that video into the virtual 
world, necessitating re-shooting of video to pre-distort color balance and 
brightness/contrast/gamma levels. 
Navigational Issues  
     The biggest problem in communicating between techies and artists was trying to 
explain the necessity of consistency in navigational systems. For instance, the joystick 
was either going to move us through the space, or move objects toward our position. It 
could not do both without a mode-switching mechanism, and there was a desire to keep 
the user interface as simple as possible, so mode-switching was out of the question. 
In addition, there was the problem of "picking." How shall we decide when an object 
should be "activated?" One suggestion was a proximity activator, which could allow a 
user interface which flew us through the space. As we approached a threshold near an 
object, the object could become activated and tell us its story, take us to another 
screen, etc. As we left the object, life would return back to normal (for some reason, this 
suggestion did not take.) Any other object picking modality required a button, or some 
sort of picking device, and many more complications, and it had to be explained that once 
a interface coding system had been developed, it needed to stay consistent, for 
programming sake and also for ease of use for the audience.  
A Helpful Solution for Artists 
     A proposal was made to develop a text configuration file, where the artists may write 
along the lines of: 
Shape (color, size, x-coordinate, y-coordinate, z-coordinate, texture.jpg)i.e., 
Box (Red, 20, 5, 10, -3, myTexture.jpg) 
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Sphere (blue, 10, 3, 6, 10, anotherTexture.jpg) 
Movie (white, 10, 4, 8, 22, myMovie.mov)      
This would allow non-programmers to place objects in the file, render them, and test the 
project as an interior decorator might test out a room in a 3D modeling program. The 
program would be written to read in this text configuration file at run-time, so no compile 
or debugging would be necessary. At the initial stage of the 360 project, this idea was 
scrapped due to time and monetary constraints and also, because the OpenGL code is 
quite simple and similar to the above syntax; it was thought that the artists could just as 
easily learn the coding syntax. What we did not consider, however, was that the artists 
would be required to learn a new editor, learn to compile and debug their code, and learn 
how to run it on a complicated distributed-graphics, grid operating system. In the future, 
the configuration file route will be taken. 
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