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I. Tasks, Conditions and Submissions

We participated in all three tasks for text: Entity Discovery
and Linking (EDL), Machine Translation (MT) and Situation
Frame (SF), and SF for speech, for both incident languages
(ILs): IL5 (Tigrinya) and IL6 (Oromo).
Tables I, II, III, IV, V and VI summarize the submissions

for each task, condition, and checkpoint.

A. EDL Highlights

Some new and successful approaches for EDL include:
• We developed a multi-lingual common space which al-
lows related languages to share and transfer resources and
knowledge on multiple levels.

• We developed various incident-drive knowledge resource
acquisition methods to obtain name gazetteers, name
translations and contextual words.

• We developed effective text normalization methods and
significantly improved IL6 name tagging, linking and
clustering.

• We developed a general Chinese Room framework to
perform rapid data selection and annotation by non-native
speakers.

We will analyze the detailed impact of these techniques in
Section II-G, including additional submissions which are not
part of the rearranged ensembles.

B. MT Highlights

We used a variety of MT systems, including phrase-based,
Hiero, and syntax-based approaches. We built special out-of-
vocabulary (OOV) word translators, plus a do-not-translate
tagger that kept OOV translation in check. We effectively
developed in-domain parallel data with Native Informants,
using our Chinese Room interface.

C. SF Highlights

We augmented our training data by, apart from all the
released Situation Frame development datasets, using the
released speech SF development datasets, after transcription
through Automatic Speech Recognition and translation using
the ELISA, Google and Bing Machine Translation interfaces.
We developed a system producing status variables for the
frames, based on our Sentiment classification system from the
LORELEI Sentiment pilot. We used EDL linking information
to improve localization performance. We used a dictionary-
based hashtag and twitter handle splitter as a pre-processing
step, that allowed our SF models to understand hashtags and
handles and lead to dramatic performance improvements in
cases where MT BLEU was low.

II. Entity Discovery and Linking

Our EDL team consisted of Xiaoman Pan, Boliang Zhang,
Ying Lin, Di Lu, Lifu Huang, Kevin Blissett, Tongtao Zhang,



TABLE I
ELISA IL5 EDL Rearranged Ensemble Submissions

Ensemble Check Point Condition Submission Description
1 1 Constrained 1622 Full system with the best components of name tagging,

linking and clustering. Name tagger is based on
bi-LSTM+CRFs using noisy training data. Linking is based
on name translation and collective inference. NIL clustering
is based on text normalization.

2 Constrained 1865

3 Constrained 2316

2 1 Constrained 1622 The same as constrained-1, with an additional
within-document coreference resolution component for
person name mentions based on heuristic rules in CP3.

2 Constrained 1865
3 Constrained 2303

TABLE II
ELISA IL6 EDL Rearranged Ensemble Submissions

Ensemble Check Point Condition Submission Description
1 1 Constrained 1635 Full system with the best components of name tagging,

linking and clustering. Name tagger is based on
bi-LSTM+CRFs using noisy training data. Linking is based
on name translation and collective inference. NIL clustering
is based on text normalization.

2 Constrained 2064

3 Constrained 2391

2 1 Constrained 1635 The same as constrained-1, but increase threshold for
linking so more partial match mentions become NIL.2 Constrained 2064

3 Constrained 2438
3 1 Constrained 1635 The same as constrained-1, but set different thresholds for

linking in CP3.2 Constrained 2064
3 Constrained 2452

4 1 Constrained 1635 The same as constrained-1, but set different thresholds for
linking in CP3.2 Constrained 2064

3 Constrained 2374
5 1 Constrained 1635 The same as constrained-1, but apply a name tagger with

higher precision and lower recall model trained from
different data split in CP2.

2 Constrained 2062
3 Constrained 2391

6 1 Constrained 1635 The same as constrained-2, but apply a name tagger with
higher precision and lower recall model trained from
different data split in CP2.

2 Constrained 2062
3 Constrained 2438

7 1 Constrained 1635 The same as constrained-3, but apply a name tagger with
higher precision and lower recall model trained from
different data split in CP2.

2 Constrained 2062
3 Constrained 2452

8 1 Constrained 1635 The same as constrained-4, but apply a name tagger with
higher precision and lower recall model trained from
different data split in CP2.

2 Constrained 2062
3 Constrained 2374

9 1 Constrained 1635 The same as constrained-1, but keep unstranslated singleton
NIL entities in CP3.2 Constrained 2064

3 Constrained 2425
10 1 Constrained 1635 The same as constrained-5, but keep unstranslated singleton

NIL entities in CP3.2 Constrained 2062
3 Constrained 2425

Dian Yu, Samia Kazemi, Ulf Hermjakob, Nima Pourdamghani,
Kevin Knight and Heng Ji.

A. Core Algorithmic Approach
The overall framework follows our EDL system for 282

languages [1] and consists of three steps: (1) Incident Lan-
guage (IL) name tagging; (2) Translate IL names to English
and link them to English knowledge base (KB); and (3) cluster
unlinkable (NIL) name mentions. We will present detailed
approach for each step as follows.
Name Tagging.
We use a typical neural network architecture that consists

of Bi-directional Long Short-Term Memory and Conditional
Random Fields network [2] as our underlying learning model
for name tagging. One novel addition to this framework we
made this year is character embedding learning. Instead of

learning word embeddings directly, for each language, we
applied a Convolutional Neural Network over the sequence of
characters of each word, and a max-over-time pooling function
to compose word representations. For each language, we fur-
ther optimized each word’s representation with a multi-layer
Long Short-term Memory (LSTM) and a softmax function,
minimizing the loss between the predicted distribution over
next word and the actual next word. This architecture requires
a large amount of training data in order to be effective. In the
LoreHLT2017 setting we are provided some labeled data for
IL5 (140 documents from REFLEX) and no labeled data for
IL6. We have developed the following approaches to acquire
noisy training data:
RL to IL Converter. We developed a general framework

to convert a word in a related language (RL) to a word in
an incident language (IL). In LoreHLT2017 we chose RL5 =



Check Point Condition Submission Description
1 Constrained cp1c1 vanilla sbmt, v2 data, edit-distance oov, pre-found dictionaries
1 Constrained cp1c2 buggy
1 Constrained cp1c3 same as c1, but parallel data auto resegmented
1 Constrained cp1c4 system combination (syscomb) of [cp1] u3,u1,c5, u3 without oov
1 Constrained cp1c5 u3 rescored with nmt built with transfer learning from french-english (nmt-ch)
1 Constrained cp1c6 syscomb of u1,u2,u3,u4,u5
1 Constrained cp1c7 copy of u4
1 Constrained cp1c8 cp1 setup, but with UW post-edit oov handling, instead of edit distance
1 Constrained cp1c9 syscomb of u1,u2,u3,u4,u5
1 Unconstrained cp1u1 moses v3 data
1 Unconstrained cp1u2 hiero v3 data
1 Unconstrained cp1u3 sbmt v3 data with amh2tir, edit distance-based oov finder (edoov)
1 Unconstrained cp1u4 u3 rescored with nmt built without any transfer learning (nmt-sa)
2 Constrained cp2c1 system combination of cp2c2 cp2c3 cp1u3 and cp2c5
2 Constrained cp2c2 moses v6 data
2 Constrained cp2c3 nd nmt v5 data
2 Constrained cp2c4 cp2u5
2 Constrained cp2c5 isi nmt v5 data, amh2tir, tgdict5
2 Unconstrained cp2u1 cp2u2 with postprocessing
2 Unconstrained cp2u2 cp1u3 with parallel data changed from v3 to v5
2 Unconstrained cp2u3 cp2u2 +dict v5
2 Unconstrained cp2u4 cp1u3 + dict v5
2 Unconstrained cp2u5 cp2u4 + nmt-sa
2 Constrained cp2u6 cp2u4 + nmt-ch
2 Constrained cp2u7 source as submission probe
3 Constrained cp3c1 cp2c4
3 Constrained cp3c2 cp3u1
3 Constrained cp3c3 sbmt v6 data, v8 dict, amh2tir, uw oov
3 Constrained cp3c4 hiero s11
3 Constrained cp3c5 moses v6
3 Constrained cp3c6 syscomb of cp3u3, cp3u4, sbmt v6 data amh2tir v8 dict uwoov, cp3c4, cp3c5
3 Constrained cp3c7 cp3u4 + nmt-sa
3 Constrained cp3c8 hiero s10
3 Unconstrained cp3u1 cp2u5 with v3 data instead of v5
3 Unconstrained cp3u2 syscomb of cp3c5, cp2c3, cp3u1, cp3u1 without nmt-sa
3 Unconstrained cp3u3 cp3u4 + edoov
3 Unconstrained cp3u4 sbmt v6 data amh2tir v8dict
3 Unconstrained cp3u5 oracle sentence merge of cp3u1, cp2u5, cp3u3 (cp3u1 base)
3 Constrained cp3u6 trained system selector based on per-sentence scores in cp3u1, cp2u5, cp3u3 (buggy)
3 Constrained cp3u7 cp3c4
3 Constrained cp3u8 bugfix of cp3u6

TABLE III
ELISA IL5 MT Submissions

Amharic and RL6 = Somali. The converter consists of four
steps in the following order: (1) we gather an RL-English
lexicon and an IL-English lexicon, and align RL and IL entries
using their English translations as anchors. (2) For each of
the remaining RL words, we then find its best IL counterpart
with the shortest edit distance lower than some threshold. (3)
if (2) fails, we try to find its best IL6 counterpart with the
soundex similarity higher than some threshold. (4) If all of the
above steps fail, we build a common semantic space based on
Canonical Correlation Analysis. We map the embeddings of
words in RL to the semantic space of IL by computing cross-
lingual semantic similarity. Using this approach we converted
78.6% Amharic words to Tigrinya, and 67.1% Somali words
to Oromo. Table IX and Table X present some Amharic-
to-Tigrinya and Somali-to-Oromo word and name examples
converted from each step respectively. As we obtained more
noisy training data across check points, the RL to IL converted
annotations did not provide significant improvement for EDL,
but provided 4 point BLEU gain for IL5 MT in CP2 and about

1 point BLEU gain for IL6 MT in CP3.
Chinese Room. We applied cross-lingual topic modeling

based on lexicons to clustered all IL documents in Set 0-2
and English documents in Set S and Leidos corpus, then we
selected incident related IL documents based on the keywords
listed in the scenario model. We built a ”Chinese Room”
EDL interface where an IL document is displayed, and words
and candidate names are translated based on lexicons and
gazetteers. A user can also collect and provide his/her knowl-
edge about an IL in the interface, such as name designators.
The romanized version of IL5 is also displayed. This interface
allows a user to identify, classify and translate names in
each IL sentence. The interface also allows a user to delete
a sentence with low annotation confidence. Besides native
informants (NIs) provided, our system developers who are
non-native speakers also used this interface to generate noisy
name annotations.
Entity Linking.
We mined IL-English name translation pairs from various



Check Point Condition Submission Description
1 Constrained cp1c1 sbmt v2 parallel data
1 Constrained cp1c2 sbmt v3 parallel data
1 Constrained cp1c3 sbmt v4 parallel data
1 Constrained cp1c4 syscomb of sbmt v4 data edoov, sbmt v4 data edoov + nmt-ch
1 Constrained cp1c5 sbmt + nmt-ch
1 Constrained cp1c6 syscomb of cp1u4, cp1u3, cp1u1, sbmt v2 dict + nmt-ch
1 Constrained cp1c7 sbmt v4 data, v2 dict nmt-sa
1 Constrained cp1c8 cp1u5 + uw oov
1 Unconstrained cp1u1 hiero s6
1 Unconstrained cp1u2 cp1u5 + nmt-sa
1 Unconstrained cp1u3 sbmt v2 dict + edoov
1 Unconstrained cp1u4 sbmt v2 dict
1 Unconstrained cp1u5 sbmt 25 hour system
1 Unconstrained cp1u6 sbmt v4 data, no postproc
2 Constrained cp2c1 cp1c3 + dict v6
2 Constrained cp2c2 cp2c1 + spell normalization
2 Constrained cp2c3 sbmt v4 data + dict v6 + restrictive identity + detect english
2 Constrained cp2c4 cp1c3
2 Constrained cp2c5 syscomb of 3 sbmts, hiero, moses
2 Constrained cp2c6 UW postedit OOV on top of cp1c3
2 Constrained cp2c7 source as mt probe
2 Constrained cp2c8 smbt v4 dict v6
2 Unconstrained cp2u1 hiero s7
2 Unconstrained cp2u2 hiero s9
2 Unconstrained cp2u3 sbmt data v4 dict v6
2 Unconstrained cp2u4 sbmt data v5 dict v4
2 Unconstrained cp2u5 cp2u4 + ch-nmt
2 Unconstrained cp2u6 cp2u5 no postproc
2 Unconstrained cp2u7 cp2u4 no postproc
2 Unconstrained cp2u8 sbmt data v4 dict v4
2 Unconstrained cp2u9 moses v6
2 Unconstrained cp2u10 buggy
3 Constrained cp3c1 sbmt v6 som2eng dict v7 copyme uw oov
3 Constrained cp3c2 cp3u1 - oov + maroon
3 Constrained cp3c3 hiero s11
3 Constrained cp3c4 moses v6
3 Constrained cp3c5 sbmt v6 som2eng dict v7 copyme uw
3 Constrained cp3c6 cp3c1, but attempt to normalize oromo spelling
3 Unconstrained cp3u1 copyme v1
3 Unconstrained cp3u2 copyme v2
3 Unconstrained cp3u3 copyme v3
3 Unconstrained cp3u4 copyme v5
3 Unconstrained cp3u5 sbmt v6data som2eng copyme v6 dict v7
3 Unconstrained cp3u6 copyme v5 + ml
3 Unconstrained cp3u7 cp3u5 + edit-distance oov
3 Unconstrained cp3u8 sbmt dict7 copyme v5 + oov word replace
3 Unconstrained cp3u9 sentence oracle of cp3u5, cp3u8, cp2c7

TABLE IV
ELISA IL6 MT Submissions

approaches: (1) Cross-lingual Wikipedia titles; (2) Cross-
lingual Geoname titles; (3) Name translation pairs mined from
IL5 parallel sentences by automatically extracting names from
English side and manually aligning them with names in IL
in the Chinese Room interface; (4) We collected incident-
related English names by automatically extracting names from
English scenario model documents and Leidos documents,
as well as mining all Oromia region names from Geon-
ame database. Then we translated these names based on
gazetteers and soundex matching, and asked NIs to translate
the remaining ones to IL6. (5) Using these name translation
pairs and lexicon as seeds, we adopted a bootstrapping based
graph alignment approach [3] to mine more name pairs from
comparable documents in Set0-2 and Set S/Leidos. At the end

of CP3 we acquired 2,897 IL5-English name pairs and 1,899
IL6-English name pairs.

After we translate each each IL name mention into English,
we apply an unsupervised collective inference approach to
link each translated mention to the target KB. The unique
challenge in the LORELEI setting is that the target KB is
very scarce, without rich linked structures, text descriptions
or properties as in traditional KBs such as Wikipedia. Only
500k out of 4.7 million entities in DBpedia are linked to
GeoNames. We associate mentions with entities in the target
KB in a collective manner, based on salience, similarity and
coherence measures [4]. We calculated topic-sensitive PageR-
ank scores for 500k overlapping entities between GeoNames
and Wikipedia as their salience scores. Then we construct a



TABLE V
ELISA IL5 SF Text Submissions. Final ensembles listed.

Check Point Condition Submission ID Description
1 Constrained cp1c1 1445 Combination: MLP-LSA + CNN-GRU, no “regime” frames allowed
1 Constrained cp1c2 1444 Same as (cp1c1), but also “crime” frames not allowed
1 Constrained cp1c3 1445 Same as (cp1c1)
1 Constrained cp1c4 1446 MLP-LSA
1 Constrained cp1c5 1447 CNN-GRU
1 Constrained cp1c6 1458 Combination: MLP-LSA + LEIDOS
1 Constrained cp1c7 1451 Combination: MLP-LSA + CNN-GRU + LEIDOS
1 Constrained cp1c8 1486 baseline model
1 Constrained cp1c9 1456 HATT model
1 Constrained cp1c10 1456 same as (cp1c9)
2 Constrained cp2c1 1834 Combination: MLP-LSA + CNN-GRU, no “regime” frames allowed
2 Constrained cp2c2 1833 Same as (cp2c1), but also “crime” frames not allowed
2 Constrained cp2c3 1830 Same as (cp2c1), but “regime” frames allowed
2 Constrained cp2c4 1835 MLP-LSA
2 Constrained cp2c5 1836 CNN-GRU
2 Constrained cp2c6 1839 Combination: MLP-LSA + LEIDOS
2 Constrained cp2c7 1838 Combination: MLP-LSA + CNN-GRU + LEIDOS
2 Constrained cp2c8 1849 baseline model
2 Constrained cp2c9 1824 HATT model
2 Constrained cp2c10 1846 HATT v2 model, with one extra layer over (cp2c9)
3 Constrained cp3c1 2270 Combination: MLP-LSA + CNN-GRU, no “regime” frames allowed
3 Constrained cp3c2 2271 Same as (cp3c1), but also “crime” frames not allowed
3 Constrained cp3c3 2265 Same as (cp3c1), but “regime” frames allowed
3 Constrained cp3c4 2266 MLP-LSA
3 Constrained cp3c5 2267 CNN-GRU
3 Constrained cp3c6 2268 Combination: MLP-LSA + LEIDOS
3 Constrained cp3c7 2269 Combination: MLP-LSA + CNN-GRU + LEIDOS
3 Constrained cp3c8 2264 baseline model
3 Constrained cp3c9 2245 HATT model
3 Constrained cp3c10 2256 HATT v2 model, with one extra layer over (cp3c9)

TABLE VI
ELISA IL6 SF Text Submissions. Final ensembles listed.

Check Point Condition Submission ID Description
1 Constrained cp1c1 1441 Combination: MLP-LSA + CNN-GRU, no “regime” frames allowed
1 Constrained cp1c2 1439 Same as (cp1c1), but also “crime” frames not allowed
1 Constrained cp1c3 1441 Same as (cp1c1)
1 Constrained cp1c4 1448 MLP-LSA
1 Constrained cp1c5 1449 CNN-GRU
1 Constrained cp1c6 1459 Combination: MLP-LSA + LEIDOS
1 Constrained cp1c7 1450 Combination: MLP-LSA + CNN-GRU + LEIDOS
1 Constrained cp1c8 1487 baseline model
1 Constrained cp1c9 1463 HATT model
1 Constrained cp1c10 1463 same as (cp1c9)
2 Constrained cp2c1 1843 Combination: MLP-LSA + CNN-GRU, no “regime” frames allowed
2 Constrained cp2c2 1844 Same as (cp2c1), but also “crime” frames not allowed
2 Constrained cp2c3 1831 Same as (cp2c1), but “regime” frames allowed
2 Constrained cp2c4 1840 MLP-LSA
2 Constrained cp2c5 1841 CNN-GRU
2 Constrained cp2c6 1842 Combination: MLP-LSA + LEIDOS
2 Constrained cp2c7 1845 Combination: MLP-LSA + CNN-GRU + LEIDOS
2 Constrained cp2c8 1850 baseline model
2 Constrained cp2c9 1825 HATT model
2 Constrained cp2c10 1847 HATT v2 model , with one extra layer over (cp2c9)
3 Constrained cp3c1 2276 Combination: MLP-LSA + CNN-GRU, no “regime” frames allowed
3 Constrained cp3c2 2277 Same as (cp3c1), but also “crime” frames not allowed
3 Constrained cp3c3 2260 Same as (cp3c1), but “regime” frames allowed
3 Constrained cp3c4 2272 MLP-LSA
3 Constrained cp3c5 2273 CNN-GRU
3 Constrained cp3c6 2275 Combination: MLP-LSA + LEIDOS
3 Constrained cp3c7 2274 Combination: MLP-LSA + CNN-GRU + LEIDOS
3 Constrained cp3c8 2257 baseline model
3 Constrained cp3c9 2244 HATT model
3 Constrained cp3c10 2243 HATT v2 model, with one extra layer over (cp3c9)



TABLE VII
ELISA IL5 SF Speech Submissions. Final ensembles listed.

Check Point Condition Submission ID Description
1 Constrained cp1c1 2513 MLP with relevance classifier(RC) and BUT ASR
1 Constrained cp1c2 2514 CNN-GRU with relevance classifier and BUT ASR
1 Constrained cp1c3 2515 MLP + CNN-GRU with relevance classifier and BUT ASR
1 Constrained cp1c4 2518 CNN-GRU without relevance classifier and BUT ASR
1 Constrained cp1c5 2519 MLP + CNN-GRU without relevance classifier and BUT ASR
1 Constrained cp1c6 2520 CNN-GRU with relevance classifier and UIUC ASR
1 Constrained cp1c7 2522 MLP + CNN-GRU without relevance classifier and BUT ASR. Different training set
1 Constrained cp1c8 2523 CNN-GRU without relevance classifier and BUT ASR. Different training set
1 Constrained cp1c9 2524 Combination of two MLP + CNN-GRU systems, one with RC the other without. BUT ASR
1 Constrained cp1c10 2526 MLP without relevance classifier and BUT ASR

TABLE VIII
ELISA IL6 SF Speech Submissions. Final ensembles listed.

Check Point Condition Submission ID Description
1 Constrained cp1c1 2496 MLP without relevance classifier(RC) and BUT ASR
1 Constrained cp1c2 2498 CNN-GRU without relevance classifier and BUT ASR
1 Constrained cp1c3 2499 MLP + CNN-GRU with relevance classifier and BUT ASR
1 Constrained cp1c4 2500 MLP without relevance classifier and UIUC ASR
1 Constrained cp1c5 2501 Combination of two MLP systems without RC, one using BUT ASR the other UIUC ASR
1 Constrained cp1c6 2502 MLP with relevance classifier(RC) and BUT ASR
1 Constrained cp1c7 2503 MLP + CNN-GRU with relevance classifier and BUT ASR.
1 Constrained cp1c8 2504 MLP without relevance classifier and BUT ASR. Different training set
1 Constrained cp1c9 2505 MLP with relevance classifier and BUT ASR. Different training set
1 Constrained cp1c10 2506 MLP + CNN-GRU without relevance classifier and BUT ASR

TABLE IX
RL (Amharic) to IL (Tigrinya) Conversion Examples

Conversion
Method

Amharic Tigrinya

Lexicon ዩናይትድ ስቴትስ
(United States)

ሕቡራት መንግስታት
አሜሪካ

Edit Distance በደቡብ ሱዳን ንደቡብ ሱዳን
በካሊፎርኒያ ካሊፎርኒያ
በፓስፊክ ፓስፊክ
የሶማሊያ ሶማሊያ
የአፍሪካ አፍሪካ

Embedding መቀሌ (Mekele) መቐለ

knowledge networks from source language texts, where each
node represents a name mention, and each link represents
a sentence-level co-occurrence relation. If two mentions co-
occur in the same sentence, we prefer their entity candidates
in the KB to share administrative code and type, or close in
terms of latitude and longitude values.
NIL Clustering.
NIL clustering is especially challenging for IL6 due to the

numerous spelling variants for each word. For example, there
are about 244 different spellings in Set 0-2 for the entity
“Ethiopia”. For NIL mentions we created initial clusters based
on exact string matching on mention surface forms. Then we
applied multiple steps to cluster mentions: (1) We developed a
normalizer to normalize surface forms by removing name des-
ignators and stop words and stemming. We grouped mentions
with the same normalized surface form, e.g., “Finfinnee” and
“magaalaa Finfinne”; (2) We clustered mentions with similar

TABLE X
RL (Somali) to IL (Oromo) Conversion Examples

Conversion
Method

Somali Oromo

Lexicon Hayyuudha
Garoomaadha Madobee
(Oromo Democratic

Front)

Kallacha Walabummaa
Oromiyaa

Edit Distance Somaaliilandi Somaaliiland
Indooneesiyaa Indooneeshiyaa

Filiipins Filippiinsi
Angeelaa Merkeel Angelaa Merkel
Gaalkaayyoo Galkaayoo

Soundex Guinea Giinii
Hargiisa Hargeessaa
Tanzania Tanzaniyaa
Melbourne Meelboorn
Queensland Quwiinsilaandi

Embedding CID (Coalition for
Unity and Democracy)

CUD

NYSIIS representation (similar to Soundex) longer than four
letters, after removing double consonants and vowels. For
example, “Aanaa Mi�essoo” and “Aanaa Muneessaa” were
grouped into one cluster. (3) We clustered two mentions if the
edit distance between their normalized surface forms is equal
to or smaller than a threshold D, where D = length(mention1)
/ 8 + 1, which means we allow one character to be different
per 8 characters. For example, “Aanaa Muneessaa” and “Anaa
Muneesaa” are grouped. Finally we merged two clusters if
they include mentions sharing the same English translation.



B. Critical Additional Features and Tools Used
The name tagging features we exploited for both ILs

include: (1) Character embeddings and word embeddings
learned from all Set 0-2 monolingual corpora; (2) Name
designators translated from English; (3) hierarchical Brown
clusters; (4) Stemming features based on various morphologi-
cal analysis methods as described in Section II-D below; and
(5) GPE/LOC names in ILs collected from Geoname which
is part of the KB. For IL5 we trained a part-of-speech (POS)
tagger from REFLEX data and used POS tags as additional
features. We asked NIs to translate English names of Oromia
regions to IL6 and used them as additional features for IL6.
We also used the fabulous universal romanizer developed by
ISI in our annotation interface to create noisy training data
from Set0-2.

C. Other Data Used
We used multi-lingual Wikipedia and DBPedia dumps, and

massively multi-lingual Panlex which were collected before
the evaluation.

D. Significant Pre/Post-Processing
Morphology analysis is very important for both ILs, espe-

cially to normalize many spelling variants of Oromo words.
We exploited both UPenn and JHU morphology analyzers but
they didn’t provide positive gains in the evaluation sets, though
UPenn morphology analysis provided 0.7% improvement on
IL5 development set from Set1.
Therefore we developed our own IL6 text normalizer to

learn more generalizable word embeddings, and used normal-
ized forms to perform better name translation matching in link-
ing and NIL clustering. We generated all possible inflections
for nouns and adjectives, including Noun plural, Definiteness,
Nominative case, Genitive case, Dative case, Instrumental
case, Locative case, Ablative case, Feminie adjective, Adjec-
tive plural, and replaced/fixed consonant combinations (e.g.,
bt ==> bd), And (-f), and Also (-s). We then used these
variants to map each token to its most popular counterpart,
its shortest counterpart, and its stemming form by further
removing, duplicating or shortening the ending vowels. For
IL6 the vocabulary size is reduced from 234,001 to 100,166
after normalization.
We developed a special post-processing step for @ mentions

and hashtags in tweets, by automatically parsing each mention
into multiple tokens, and running English EDL to candidate
names.

E. Native Informant Use
We asked the Native Informant to perform the following

tasks at each check point:
• CP1: Translated incident related English names automat-
ically extracted from Leidos Corpora into IL5 (failed due
to lack of efficient typing software) and IL6.

• CP2: Annotated some incident related documents; Trans-
lated English names of Oromia regions into IL6; Trans-
lated system extracted most frequent IL names in Set1

into English; answered some linguistic questions such as
the meaning of affixes.

• CP3: Annotated some incident related documents; Trans-
lated system extracted most frequent IL names in Set2
into English; Translated incident related English names
automatically extracted from Set S into IL6.

F. EDL for Speech
We apply the best CP3 text EDL system to Automatic

Speech Recognition (ASR) output for both ILs. For IL6
name tagging we applied the model trained from lower-cased
data because ASR output is not truecased. We applied the
best CP3 text EDL system to Set0-2, along with English
names extracted from Set S, and constructed a ”expect-to-
appear” name gazetteer that includes IL name, its English
translation if it’s available, and its frequency in Set0-2. BUT
and UIUC-Speech teams used this name gazetteer for their LM
adaptation so ASR can recognize these names (see Sec. V). We
also applied BUT’s English and IL keyword spotting (KWS)
algorithms to directly search these expected IL names and
their English translations in IL speech. In this way we hope to
overcome some ASR missing errors on names. Unfortunately
we obtained too many matched candidates in speech and did
not get enough time to work around various thresholds.

G. Evaluation Results and Analysis
In this section we will present the evaluation results and the

impact of some new and successful methods for each checking
point. We report the overall end-to-end CEAF results (EDL),
name tagging (NER), and name tagging and linking (NEL).
Checkpoint 1.
For IL5, we used 5,003 name annotated sentences from

LDC REFLEX corpus and 613 sentences from Chinese Room
annotated by non-native speakers to train the name tagger.

IL5 Description EDL NER NEL
1622 Best Run 0.425 0.723 0.450

For IL6 we 2,382 sentences from Chinese Room annotated
by non-native speakers to train the name tagger. We noticed
that there are many capitalized tokens in Set 0 tweets, so we
decided to lower-case all training data and trained a separate
model for tweets. This provides 6.2% name tagging F-score
gain. We also applied the tagger trained from lower-cased data
to process Automatic Speech Recognition (ASR) output for the
speech localization evaluation.

IL6 Description EDL NER NEL
1634 no Lowcase for SN 0.156 0.295 0.158
1635 Best Run 0.189 0.357 0.195

We learned two major lessons from CP1: (1) Our IL6 name
tagger achieved 81% F-score on a development set selected
from Set 0. This huge gap between the development set
and the evaluation set indicated that we should improve our
development set selection based on the scenario model. (2)
We noticed the spelling variant problem in IL6 but did not
get time to develop a text normalizer. So we decided to focus
on it in CP2.



Checkpoint 2.
After applying hashtag parser and English EDL, we ob-

tained 0.3% improvement in IL5 name tagging (run 1667). For
IL5 Up to CP2 we obtained 813 sentences from Chinese Room
annotated by both non-native speakers and NIs. The new
training data provided 2.1% improvement on name tagging.
New name translation pairs significantly improved linking and
clustering.

IL5 Description EDL NER NEL
1667 Best CP1 + hashtag 0.403 0.726 0.426
1865 Best Run (1667 + more

name translation)
0.575 0.747 0.628

We read the IL6 entity annotation guideline more carefully
and noticed that if a group of people is involved in a social
movement it should be tagged as PER, otherwise it’s not a
name. From Set 0 and Set 1 we noticed that “oromo” appears
very often, so we did special hashtag processing by tagging
hashtags like “#oromoprotest” and “#oromorevolution” as PER
but remove all “#oromo” from name candidates. This provided
6.8% absolute name tagging F-score improvement (run 1687).
Then we propagated all Oromia region names translated from
English to IL6 by the NIs and obtained 6.6% further improve-
ment on name tagging (run 1709). Up to cp2 we obtained
6,093 sentences from Chinese Room annotated by both non-
native speakers and NIs. The new name tagger trained from
the new data set provided 10.1% improvement (run 1731).
We used lexicon translation as feedback to remove low-
frequency names with all lower-case translations and obtained
1.8% improvement (run 1733). Following the guideline we
tagged more slogan abbreviations that include people who
participated in protests as PER (e.g., FDG, FXG) and obtained
3% more improvement (run 1735). The remaining linking
and clustering improvement was obtained from more name
translation pairs and text normalization. The text normalization
component was a major contributor to the big jump of linking
and clustering performance from CP1 to CP2, because it
effectively clustered name variants into entities and linked
them to the right entries in the KB. Figure 1 shows the impact
of text normalizer at “cutting down” the long tail of entity
clusters (i.e., reduced the number of singleton entity clusters).

IL6 Description EDL NER NEL
1687 Best CP1 + Hashtag 0.191 0.425 0.237
1709 1687 + Oromia 0.201 0.491 0.247
1731 1709 + more data 0.214 0.592 0.274
1733 1731 + translation feed-

back
0.227 0.610 0.288

1735 1733 + slogan 0.230 0.640 0.329
2064 Best Run 1 (1735 + more

name translation + text nor-
malization)

0.409 0.679 0.513

2062 Best Run 2 (1735 + more
name translation + aggres-
sive text normalization)

0.420 0.664 0.520

Checkpoint 3.
We automatically detected English texts in IL5 and directly
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Fig. 1. Impact of Text Normalization on Reducing Singleton Entity Clusters
(cutting-down entity long tail)

applied English EDL on them, and obtained 0.8% overall
improvement (run 2099). At the end we obtained 4,459
sentences annotated from both non-native speakers and NIs,
but compared to CP2, the new annotations did not provide any
further significant improvement. One possible reason is that
during CP3 non-native speakers did annotations in a rush, and
perhaps we have captured easy cases but still failed to find
difficult cases without being able to understand the whole con-
text. Text normalization was not so effective for IL5, so some
common name mentions were mistakenly identified as NILs,
so we decided to apply cluster all mentions first, and then link
each cluster to the KB by propagating KB IDs across members
in each cluster. This strategy provided 2.6% improvement in
name tagging and linking (run 2161). We cleaned the mapping
between Wikipedia titles and LORELEI KB titles and obtained
1.1% further improvement in name tagging and linking (run
2170). Finally we added more name translation pairs from NIs
and obtained 1.9% overall improvement for the best run.

IL5 Description EDL NER NEL
2099 Best CP2 + English EDL 0.583 0.747 0.635
2161 2099 + Clustering before

Linking
0.608 0.747 0.661

2170 2161 + clean KB mapping 0.619 0.747 0.672
2316 Best Run (2170 + more

name translation)
0.638 0.748 0.690

We removed some social movement names like “qeer-
roon” from ORG candidates and obtained 1.3% name tagging
improvement (run 2111). We cleaned name translations and
obtained improvement in name tagging and linking (run 2136).
Up to CP3 we obtained annotations for 7,693 sentences from
both non-native speakers and NIs. Adding new training data
provided 1.4% improvement in name tagging (run 2164). We
also attempted to remove all singleton NILs for which we
were not able to translate, and obtained 1.2% overall improve-
ment (run 2452). Ignoring east/west/north/south modifiers in
GPE/LOC linking provided 0.5% gain in name tagging and
linking in the final best run.



IL6 Description EDL NER NEL
2111 Best CP2 (2064) + remove

movement
0.442 0.692 0.551

2136 2111 + clean name transla-
tion

0.460 0.695 0.558

2164 2136 + more data 0.476 0.709 0.578
2452 2164 + remove untrans-

lated singleton NILs
0.488 0.713 0.598

2391 Best Run (2452 + ignor-
ing GPE/LOC modifiers in
linking)

0.490 0.712 0.603

Hill Climbing Summary
Figure 2 and Figure 3 summarize the above EDL hill-

climbing stories.
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H. Remaining Challenges
For IL5 we a good starting point for name tagging at CP1

thanks to the REFLEX annotations. However, it was difficult
to further boost the performance by adding more annotations
by non-native speakers through the Chinese Room, possibly
because all low-hanging fruits were already picked, while the
limited coverage of lexicon and automatic romanized form did
not provide non-native speakers enough support to achieve

high recall (CP3 recall is 70.1% and precision is 80.1%). We
developed an automatic IL-English parallel sentence mining
method but failed to discover near-to-parallel sentence pairs
from Set0-2 and Set S/Leidos. Various types of linguistic
features such as POS tagging (trained from REFLEX data)
and UPenn morphology analysis achieved significant gains in
our development set from Set0-2 but hurt the performance on
the evaluation set.
For IL6 we were able to bring up the embarrassingly low

name tagging performance (35.7%) in CP1 to (71.2%, almost
doubled), by keeping adding incident related resources and
solving the spelling variant problem. To further investigate
the domain mismatch problem, we also ran our ”Time 0”
system, the 282 languages universal EDL system [1] on two
ILs without any tuning, and only obtained 2% name tagging
f-scores. We have achieved great success at text normalization
which significantly improved name tagging and linking (from
19.5% in CP1 to 60.3% in CP3) and NIL clustering (overall
EDL from 18.9% in CP1 to 49.0% in CP3). However the
spelling variant problem is not completely solved. Compared
to IL5, IL6 has a much longer long tail in the EDL output
(about 1,000 more NIL singletons).
Our final CP3 system achieved great linking accuracy for

both languages - 92.2% for IL5 and 84.7% for IL6. Addressing
most of the remaining errors requires deep background knowl-
edge discovery from English Wikipedia and large English
corpora. Some examples as follows.

• Before 2000, the regional capital of Oromia was Addis
Ababa, also known as “Finfinne”. It’s from the text de-
scription of “Oromia Region” entry in Wikipedia, which
teaches us “Finfinne” can be linked to “Addis Ababa” in
the KB.

• The armed Oromo units in the Chercher Mountains
were adopted as the military wing of the organization,
the Oromo Liberation Army or OLA. It’s from the
text description of “Oromo Liberation Front” entry in
Wikipedia, which teaches us “WBO (Oromo Liberation
Army)” is part of “ABO (Oromo Liberation Front)” and
thus they refer to two different entities.

• The names of the same region may have got frequently
changed in the history. The same name mention may
refer to different entities at different time points. For
example, the Wikipedia entry for “Jimma Horo” teaches
us that Jimma Horo may refer to the following: Jimma
Horo, East Welega, former woreda (district) in East
Welega Zone, Oromia Region, Ethiopia; Jimma Horo,
Kelem Welega, current woreda (district) in Kelem Welega
Zone, Oromia Region, Ethiopia. So we would really need
to figure out what kind of events and situations these
mentions were involved, at what time, in order to be
able to correctly linking and clustering them. This is even
the major challenge that the state-of-the-art English entity
linking is still facing.

• EPRDF = OPDO + ANDM + SEPDM + TPLF because
of the following facts described in Wikipedia articles:
– EPRDF: Ethiopian People’s Revolutionary Democratic



Front, also called Ehadig.
– OPDO: Oromo Peoples’ Democratic Organization.
– ANDM : Amhara National Democratic Movement.
– SEPDM : Southern Ethiopian People’s Democratic
Movement

– TPLF: Tigrayan People’s Liberation Front, also called
Weyane or Second Weyane, perhaps because there was
a rebellion group called Woyane/Weyane in the Tigray
province in 1943.

• Qeerroo is not an organization although it has its own
website, based on what’s described in news articles:
– The overwhelming belief is that its leaders are hand-
picked by the TPLF puppet-masters, and the new
generation of Oromo youth –known as the‘Qeerroo’
–have seen that it is business as usual after the latest
reform.

– The Qeerroo, also called the Qubee generation, first
emerged in 1991 with the participation of the Oromo
Liberation Front (OLF) in the transitional government
of Ethiopia. In 1992 the Tigrayan-led minority regime
pushed the OLF out of government and the activist
networks of Qeerroo gradually blossomed as a form
of Oromummaa or Oromo nationalism.

– Today the Qeerroo are made up of Oromo youth. These
are predominantly students from elementary school to
university, organising collective action through social
media. It is not clear what kind of relationship exists
between the group and the OLF. But the Qeerroo
clearly articulate that the OLF should replace the
Tigrayan-led regime and recognise the Front as the
origin of Oromo nationalism.

• Text normalization mistakenly grouped “Somali (Somali
region)”, “Somalia” and “Somaliland” but they refer to
three different entities:
– The Ethiopian Somali Regional State (Somali:
Dawlada Deegaanka Soomaalida Itoobiya) is the east-
ernmost of the nine ethnic divisions (kililoch) of
Ethiopia.

– Somalia, officially the Federal Republic of Soma-
lia(Somali: Jamhuuriyadda Federaalka Soomaaliya),
is a country located in the Horn of Africa.

– Somaliland (Somali: Somaliland), officially the Re-
public of Somaliland (Somali: Jamhuuriyadda Soma-
liland), is a self-declared state internationally recog-
nised as an autonomous region of Somalia.

III. Machine Translation

Our MT team consisted of Leon Cheung, Thamme Gowda,
Kenton Murray, Toan Nguyen, Ulf Hermjakob, Nelson
Liu, Jonathan May, Alexandra Mayn, Nima Pourdamghani,
Michael Pust, Heng Ji, David Chiang, and Kevin Knight.

A. Core Algorithmic Approach

General components.
MT Systems. Our primary submissions were a combination

of several MT systems within in the ELISA project. These
were:

• A syntax-based MT system (SBMT) built at ISI.
• A hierarchical phrase-based system (Hiero) built at Notre
Dame.

• A phrase-based system (Moses) built at Notre Dame.
• A neural system built at Notre Dame.
• A neural system (Neural) based on the Zoph_RNN toolkit
from ISI.

These MT systems were trained on parallel data provided by
NIST. Translation models and language models used mixed-
case data. Word alignment used stemmed corpora (both source
and target), down to the first four letters of each word. We used
two word aligners (GIZA and Berkeley).
Morphology. Most MT systems used the Penn and Morfes-

sor systems for unsupervised splitting of words. The SBMT
translator was additionally exposed to full-word analyses in a
source-language lattice.
Parallel Corpora. We processed the provided parallel data

into sets called ‘train’ (for MT rule acquisition), ‘dev’ (for MT
tuning), and ‘test’ (held out). We also numbered our parallel
data releases (v1, v2, v3, …). In Tigrinya v4 and Oromo v3,
we used the Gargantua sentence alignment tool [5], with a
modification to use verse numbers as a hint. In Tigrinya v5
and Oromo v4–5, we noted that many Oromo documents were
Bible chapters that had been paired with the wrong English
Bible chapters; we retrieved the correct chapters and manually
sentence-aligned them. Finally, in v6, we noted that even
correctly-paired English Bible chapters were from the archaic
King James Version; we replaced these with the modern New
World Translation from the same website.
Bilingual dictionaries. We used the LDC-provided dictio-

nary, and we pulled other entries from pre-collected massively
multilingual resources. We cleaned dictionary entries (deleting
infinitive “to” on the English side, etc). We numbered our
dictionary releases (v1, v2, v3, …). For IL5, dictionary sizes
were 19,666 (v1), 19,691 (v2, 44,264 (v3), and 85,064 (v4).
For IL6, dictionary sizes were 31,178 (v1), 30,039 (v2), 49,435
(v3 and v4).
System combination. We used Kenneth Heafield’s Multi-

Engine Machine Translation (MEMT) software [6] to combine
individual MT systems. The software constructs lattices from
sets of translations by heuristically aligning words, then tunes
weights for a set of language model and per-system features
to optimize Bleu, using the MERT algorithm [7]. We tuned
system combination using the ‘dev’ set and chose systems
with high individual Bleu scores.

Checkpoint 1.
Pre-and post-processing. It was extremely handy to have

the uroman tool prepared in advance, so that we could view
and process Tigrinya in Latin script.



For the 2016 evaluation, we developed a post-processing
cleanup system for Uighur/English SBMT. In the 2017 eval-
uation, this system hurt MT accuracy (11.21 to 10.41 on
Oromo/English), so we removed it.
Out-of-vocabulary word translation. We developed an IL

OOV translator that finds a similar known IL word and
borrows its English translation, where similarity is done with
edit distance. Moreover, we developed a method of extracting
a standalone OOV dev/test set by pulling one-count items
from the parallel text. For Tigrinya, we obtained 12.9% exact
translation accuracy on the test set.. Moving from syllabic
script to uromanized script lifted OOV exact-match translation
accuracy from 12.9% to 13.7%. Oromo OOV translation
accuracy was 22.7%.
We also used an OOV system from UW at postedit time.

It helped in Tigrinya/English (12.79 to 13.26), but it hurt in
Oromo/English (9.80 to 6.16 Bleu).
Related Languages.We also converted our Amharic/English

parallel data to Tigrinya/English via a script developed at
RPI (Section II-A), and used it to supplement our existing
Tigrinya/English parallel data for MT training. This improved
Tigrinya/English MT (12.79 to 16.76).
Re-scoring. Our neural MT (NMT) systems did not perform

well in standalone mode, but we profitably used them to re-
score SBMT n-best lists. Bleu on Tigrinya/English went from
12.79 to 13.56, and on Oromo/English from 10.41 to 11.06.
System combination. For IL5, system combination improved

Bleu from 13.56 to 14.77. However, once a single system
reached 16.82, we could not improve it via adding other
systems; system combination dropped Bleu from 16.82 to
16.64.
Native Informant (CP1, Tigrinya, one hour): We asked

whether 12 sample sentence pairs from our parallel data were
actually translations or not. This went fairly slowly. We also
asked the NI to orally translate several sentences with us
typing the English, and the NI providing oral edits.
Native Informant (CP1, Oromo, one hour): We asked

whether sample sentence pairs from our parallel data were
actually translations or not. We also asked the NI to orally
translate several sentences with us typing the English, and the
NI providing oral edits.
Chinese Room: We previously developed a interface (the

“Chinese Room”) that allows monolingual English speakers
to translate sentences from an arbitrary, unknown language,
given a dictionary and a small parallel text. It makes these
resources available in an intuitive way. Limited Oromo dic-
tionary resources and interleaved Tigrinya morphology made
it challenging to instantly bring up Chinese Room instances
for these languages.
Checkpoint 1 submission results.

IL5/Tigrinya Description CP1 Bleu
CP1c1 24 hours, v3 data, edOOV 12.79
CP1c5 CP1c1 + NMT re-score 13.56
CP1u3 CP1c1 + Amh/Eng→Tig/Eng 16.76
CP1c7 CP1c5 + CPu3 16.82

IL6/Oromo Description CP1 Bleu
CP1c1 24 hours, v2 data 9.80
CP1c3 CP1c1 + v4 data 11.21
CP1u5 CP1c3 + post-processing 10.41
CP1c5 CP1u5 + post-proc + NMT re-score 11.06

Lessons Learned:
• It was difficult to obtain resources good enough to
support the Chinese Room.

• Morfessor morphology worked better in CP1 than Penn
morphology.

• We did not get to use dictionary versions v2 or v3 in
Tigrinya/English MT.

• Dictionary v2 hurt in Oromo/English MT (10.41 -> 8.38).
We found it difficult to analyze why.

Checkpoint 2.
Parallel Data and Dictionaries. We continued to clean our

parallel data and expand our dictionaries, including IL/English
name-pair lists from IE researchers at RPI.
Related languages. We continued using our

Amharic/Tigrinya converter, and we began developing a
Somali/Oromo converter. The latter was much more difficult
due to the distance between the languages.
In-domain data. We developed small domain parallel sets

using the Native Informants, partially by working inside the
Chinese Room with them.
System combination. We got a small boost on

Oromo/English MT from system combination (11.21 to
11.30).
Doing nothing. After failing to get CP2 improvements on

Oromo/English, we finally submitted an output that just copied
the Oromo source, and got a Bleu of 11.29, which was surpris-
ingly higher than our best CP1 system, and almost the same as
our best CP2 system. We were clearly translating many words
that should be left alone. Interestingly, the do-nothing system
was worse than our MT system on Meteor (0.147 versus 0.171)
and also underperformed our MT system when we counted
how many segments were translated better according to Bleu
(168 versus 278), as reported by the NIST feedback interface.
Nevertheless, by the end of CP2 we realized than any gains
from correct MT were offset by over-translating “Oromo”
words that should not have been touched.
Native Informant (CP2, Tigrinya, first hour): We did 35

minutes of detailed Chinese Rooming with the NI. Going
word by word enabled us to learn about Tigrinya mor-
phology. We spend five minutes on a question of lexicon
cleaning/segmentation. The last 20 minutes consisted of free
translation of an article about spies and a late-night arrest. The
NI was able to translate 22 sentences with our help.
Native Informant (CP2, Tigrinya, second hour): We spent

15 minutes to translate 4 tweets, 15 minutes to translate
10 sentences from the above new article. In the remaining
30 minutes, we translated 10 sentences word-by-word in the
Chinese Room interface.
Native Informant (CP2, Tigrinya, third hour):We translated

15 sentences (bombing and refugee articles) using the method



of “NI talks, we type.”
Native Informant (CP2, Tigrinya, fourth hour): We spent

45 minutes to finish up a Chinese Room document, plus 10
minutes free translation of a news story.
Native Informant (CP2, Oromo, first and second hour):

We were able to completely go through 15 sentences word-
by-word in the Chinese Room, obtaining word glosses and
understanding morphology, in addition to full translation. We
also separately translated Oromo sentences in a plaintext
interface.
Native Informant (CP2, Oromo, third hour): We spent 20

minutes doing direct translation of 11 in-domain tweets. We
spent 40 minutes going word-by-word in the Chinese room,
translating 9 sentences.
Native Informant (CP2, Oromo, fourth hour):We spent time

doing direct translation of Oromo texts.
Chinese Room: We added functionality to the Chinese

Room, but did not release it for use during CP2, due to
the difficulties of low resources—even well-acquainted users
could not yet accurately translate inside the Chinese Room.
Checkpoint 2 submission results.

IL5/Tigrinya Description CP2 Bleu
CP1c7 Best CP1 16.82
CP2u1 no post-proc 15.70
CP2u2 yes post-proc 16.05
CP1u3 v3 data 16.76
CP2u2 v5 data 16.05
CP2u2 v3 dictionary 16.05
CP2u3 v5 dictionary 16.71
CP2u4 v5 dict 16.87
CP2c4 v5 dict + v5 data + NMT 17.54
CP2c1 system combination 17.21

IL6/Oromo Description CP2 Bleu
CP1c3 Best CP1 11.21
CP2u7 v5 parallel data 10.71
CP2c5 v? dictionary 10.70
CP2c7 v4 dictionary 11.07
CP2c6 CP1c3 + NMT re-score 11.17
CP2c5 system combination 11.30
CP2c7 Oromo source untouched 11.29

Lessons Learned.
• Cleaning up parallel texts and dictionaries for
Tigrinya/English continued to improve Bleu. Our
v5 dictionary led to better Bleu than our v3 dictionary;
however, v5 parallel data led to worse Bleu than v3
parallel data. Data versioning helped us navigate the
experimental terrain.

• Submitting source Oromo text (untouched) yielded a
better Bleu score on evaluation data than anything we
previously tried using MT. This meant that Set E had to
contain may tokens that should be passed through rather
than translated.

Checkpoint 3.
Related languages. RPI developed a Somali/Oromo con-

verter (Section II-A), and we used this to turn Somali/English

data into augmentation for our Oromo/English parallel data.
Do-not-translate (DNT) tagger. We built a CRF tagger to

identify IL tokens that should not be translated. This tagger
was trained on Somali/English (and other parallel) data, where
the foreign side has a “natural” free source of tags—if the
foreign word can be found on the English side, we mark it
as do-not-translate (DNT). This is similar to the transliterate-
me tagger in [8]. The tagger is given features based on word
spelling and context.
To evaluate the DNT tagger directly, we modified Oromo

test data by protecting tagged words, and replacing all others
by the token “the”. We hoped that this would not be much
worse than the 11.29 Bleu obtained by submitting Oromo
source text as is. (I.e., any occasional failures to protect DNT
tokens would be offset by gains from matches on the word
“the”). However, the result was 9.33, meaning that we failed
to protect many tokens. We overtranslated those, resulting in
a significant loss of 2 Bleu points over just submitting Oromo
source untouched. We then built another DNT tagger with
heuristics derived from manual Set 1 word-type analysis (other
words replaced by “the”), and the Bleu score rose to 10.08.
We felt it was important to capture more DNT words, in part

because of the low accuracy of MT and OOV translation. If
we failed to protect a DNT word, we would need to accurately
translate several non-DNT words to balance that loss.
In fact, MT could even do even more harm than translate

a word inaccurately. When we analyzed our MT system’s
workings, we noticed additional two sources of error: (1)
Morfessor would frequently break up tokens that should not
be translated, allowing the the word pieces to be translated,
and (2) even if all foreign word tokens were correctly “passed
through” (untouched), MT could freely reorder them or insert
function words between them. In such cases, Bleu 4-gram
matches could be seriously disrupted. This further explained
why we had a hard time beating the “submit Oromo un-
touched” baseline. We therefore protected DNT tokens from
Morfessor, and we joined sequences of consecutive DNT
tokens into single massive DNT phrases.
We also created a heuristic, manually-designed DNT tagger

(v5). Tokens were protected if they had any character other
than ASCII letters and apostrophe, if they look like laughter
(e.g., “hahaha”), or contain several key patterns that match
Twitter elements, if they are in an English dictionary but not
a high-frequency Oromo dictionary, or if they are one of a set
of frequently occurring incident- and news-related acronyms.
Additionally, tokens that begin with these acronyms were
translated as the acronyms themselves (inflection removed).
Finally, if 75% or more tokens in a segment were protected,
all tokens in the segmentwere protected. This resulted in 20-
28% of tokens being protected, based on Sets 1 and 2.
DNT tagger v5, combined with v6 data, v7 dictionary,

and Somali/English data converted to Oromo/English by RPI,
together yielded an improved Bleu score of 13.21, two points
higher than submitting Oromo untouched.
Special treatment of URLs and hashtags/mentions. For

the Hiero systems, a much simpler strategy was used: if



a substring looked like a URL, a hashtag, or a mention,
then it was protected from tokenization and truecasing during
preprocessing of both training and test data. This generally
caused such substrings to be OOV, so the decoder tended to
copy them to the output.
OOV translation. We refined our CP1 OOV translator to

break ties more intelligently, preferring more common English
words over less common ones (assuming both are translations
of IL words that look equally similar to the OOV).
System combination. We discovered quite late the that

NIST scoring system gives detailed segment-level feedback
information. In particular, we could discover which of our
submissions outperformed which other submissions according
to Bleu, not only across the 10% of Set E reported by NIST,
but on each segment as well. For example, our “do-nothing,
submit Oromo source” (corpus Bleu: 11.29) still outperformed
our best Oromo translation system (corpus Bleu: 13.21) on 100
of 485 segments.
We felt that this detailed feedback was not appropriate and

did not correspond to any realistic scenario. To show how it
could be exploited, we produced a new unconstrained-track
submission in which we automatically selected translations,
segment by segment, from three previous submissions, based
on Bleu scores from the NIST interface. For the 10% of
the segments on which NIST gave feedback, this strategy
improved Bleu by 2 points on Oromo (13.21 to 15.28, CP3u5)
and 3.5 points on Tigrinya (17.61 to 21.19, CP3u9). We can
consider this a kind of “oracle” system output selector.
We also built an SVM classifier to decide which system’s

output to use, on a segment-by-segment basis. This classifier
was trained on the 10% of the data for which NIST provided
feedback, and applied to the remaining 90% of the Set E data.
We trained this classifier on three Tigrinya systems, achieving
44% test set accuracy (versus 34% for always choosing the
best system, since the systems were evenly matched). By
contrast, we were not able to build a good classifier for
three Oromo systems. We do not know how these system
combinations performed on the full Set E.
At no point did we manually look at source or target

translations from Set E. We only looked at the numerical
data provided by the NIST submission site. This meant that
we developed SVM feature sets blindly, only imagining what
properties of MT inputs and outputs might let us automatically
guess which system’s outputs were better than another.
Numbers, dates, and quantities. Late in CP3, we developed

initial expression identifiers and translators for Tigrinya and
Oromo.
Native Informant (CP3, Tigrinya and Oromo):We continued

to have NIs gloss word-by-word in our Chinese Room inter-
face, so that we could understand better how the languages
work. In total, we got 110 sentences translated by Tigrinya
ILs, plus 49 sentences from monolinguals in the Chinese
Room postedited by NIs. We obtained 111 Oromo sentence
translations resulting from Chinese Room editing (by NI or
monolinguals), postedited by the NI; plus, 57 sentences from
monolinguals in the Chinese Room, not postedited.

Chinese Room. We put up our first Chinese Room in-
terfaces, with expanded functionality (such as user-to-user
transfer of word glosses). The Tigrinya interface allowed us
to translate sentences into English, but the Oromo interface
remained difficult. This was the first time we experienced such
a dearth of resources, and difficulty of language, in the Chinese
Room. If humans cannot translate under these impoverished
circumstances, we felt it calls into question asking the machine
to do so. Nevertheless, we managed to translate for ourselves
approximately 50 sentences in the Chinese Room.
We happened to include some English sentences from Set 1

in the Chinese Room, which underscored our problem with
overtranslating Oromo tokens that should be left alone. For
example, when given the sentence “Yet those who fled the
injustice are facing rejection for the last 20 to 25 years”,
the Chinese Room’s fuzzy-matching best suggested gloss is
“Wriggle hut palisade night at Justice tree hat tree sheath at
year 20 8mm 25 incense.” Should our MT system attempt
the same, we would trade in a large number of 4-gram Bleu
matches for not even a single 1-gram Bleu match.
Checkpoint 3 submission results:

IL5/Tig Description Bleu
CP2c4 Best CP2 submission 17.54
CP3u1 SBMT + v5 dict + v3 data + NMT 17.61
CP3c8 Hiero + v6 dict + v6 data, Amh→Tig 15.41
CP3c4 Hiero + v8 dict + v6 data, Amh→Tig + URL 18.54

IL6/Orm Description Bleu
CP2c7 Oromo source untouched 11.29
CP3u2 CRF DNT tagger (the otherwise) 9.33
CP3u4 v5 Heuristic DNT tagger (& the) 10.08
CP3u6 + v6 data + v7 dict + Som→Orm 13.21

Lessons Learned.
• The Chinese Room underscored the difficulty of Oromo
MT, given the scant resources. We had never encountered
a resource situation so limited that humans could not
translate in the Chinese Room.

• It was more difficult than expected to predict which
foreign words should not be translated. Of course, had we
been permitted to manually inspect Set E source material,
we would have been able to solve this problem.

B. Critical Additional Features and Tools

See above sections.

C. Other Data

We selected name pairs from our pre-collected, massively
multilingual name pair list, derived from Wikipedia sources.

D. Data Pre- and Post-Processing

See above sections.

E. Native Informant Use

See above sections.



F. Remaining Challenges

Oromo resources were small and out-of-domain, and the
test data from “the wild” contained many words that should
not be translated. Automatically identifying these should be
a high priority going forward—this is a challenge because
OOVs might be morphological variants of known words
(which should be translated) or proper names (which should
be copied). We also produced MT components for numbers,
dates, and quantities late in the evaluation, so we should
develop universal components that work out of the box (or
nearly so) on the first day.

IV. Situation Frames from Text

The primary team consisted of Nikolaos Malandrakis, Pav-
los Papadopoulos, Anil Ramakrishna, Karan Singla, Victor
Martinez, Dogan Can and Shrikanth Narayanan. However
since the situation frame model used the name tagging and
machine translation systems as modules, all members of the
ELISA team have a contribution.
We submitted constrained and unconstrained runs of situa-

tion frame detection, including types, localization and status.

A. Core algorithmic approach

We implemented a variety of models targeting situation
frames of different scopes, described below. The primary
submissions were, for all checkpoints, system combinations
of the “MLP-LSA”, “CNN-GRU”, “LEIDOS” and “OSC”
models. We also submitted results from two secondary models,
a lexicon-based baseline system and a hierarchical attention
model. Our models are not multilingual: they can only process
English and depend on the existence of machine translation
and name tagging components, which they use as inputs. In all
cases we used our team’s translation and name tagging systems
as inputs of the situation frame models. The models are top-
down: they start by assigning types to documents and then
attempt to localize those types to the available locations, then
the resulting frames (and assigned text segments) are passed
though the status detection models to get need, relief and
urgency. Most of our core models very similar to those used
in the 2016 iteration of the task. The “MLP-LSA”, “CNN-
GRU” and “LEIDOS” models were all submitted in 2016,
but for 2017 we repeated the entire hill-climbing for hyper-
parameter selection and tuned for f-score instead of precision.
The models were also trained on a combination of text and
speech SF datasets, with hill-climbing again used to decide
which subsets of the data to use in each case.
Type Detection

a) The LEIDOS model: is a compositional CNN-GRU
that accepts input documents as sequences of 1-hot vectors and
uses a CNN to compose word embeddings into sentences and a
single forward GRU to compose sentences into documents. It
was trained on the ReliefWeb corpus and the word embeddings
were initialized using the, publicly available and general
purpose, GloVe embeddings. The final layer is composed
of 40 binary classifiers, each corresponding to one topic or
disaster type. To apply to the LORELEI SF task we simply
created a deterministic mapping from some ReliefWeb to some
LORELEI categories.

b) The OSC model: is another compositional CNN-GRU,
similar to the Leidos model, but this time trained on the
OSC corpus. The generation of LORELEI labels is again
accomplished via a deterministic mapping. It was trained on
the OSC corpus and the word embeddings were initialized
using GloVe embeddings.

c) The CNN-GRU model: is the Leidos model, re-trained
specifically for LORELEI. It shares the same topology as the
ReliefWeb model, however to accommodate usage with very
limited amounts of data the components have much lower
dimensionalities. The first stage of training was performed
using the ReliefWeb corpus and GloVe embeddings for ini-
tialization, the second stage involves removing the final layer
of binary classifiers and re-training the entire network using
a combination of SF speech and text data.

d) The MLP-LSA model: is a multi-layered perceptron
applied to LSA document vectors. The LSA transformation
was learned using the OSC corpus, which was also used to
perform the first stage of training of the network. The second
stage involves replacing the final layer of binary classifiers
and re-training a combination of SF speech and text data.

e) The lexicon based model (lexica_baseline): is a logis-
tic regression classifier trained with TF-IDF features extracted
aat the document level from the HA/DR lexicon. This model
acts as a baseline and is meant to give us an idea of what
kind of gains (or losses) we are achieving by using more
complicated machine learning algorithms.

f) Hierarchical Attention Model (HATT): : Similar to the
LEIDOS model this is a compositional model but takes into
account the document structure. The model first composes all
words in each sentence using a word-level LSTM and attention
layer to get sentence representations and then composes all
sentence representations to a document representation using
sentence-level LSTM and attention layer. The model essen-
tially learns the weights for each word and each sentence in
making a decision. We then replace the prediction layer with
a new initiated prediction layer and then re-train the entire
network again end-to-end on LDC-CMN dataset. As attention
gives the importance of each word/sentence for predicting SF
type, we plan to use this model to solve localization in the
future.
Type Model Combinations
We used three combinations of the above models, achieved

via max posterior decision-level fusion (similar to the union).
• “SYSCOMB” = “MLP-LSA” ∪ “LEIDOS”.



• “SYSCOMB1” = “MLP-LSA” ∪ “CNN-GRU”.
• “OPTIMIST” = “MLP-LSA” ∪ “CNN-GRU” ∪ “LEI-
DOS”.

The system combinations are meant to increase the robustness
of the output, e.g., we expect “MLP-LSA” to be the best
preforming model for poor MT and “CNN-GRU” to perform
best for high BLEU MT, therefore the “SYSCOMB1” should
be more effective than either constituent model at leveraging
MT of variable quality, even if not absolutely the best at any
condition.
Localization
Most of the models described above are top-down: they

consume the entire document and produce document-level
labels. To localize, we use a simple solution of creating
location-specific sub-documents and attempting to classify
them using the same models. Given a detected LOC or GPE
entity, we will collect all sentences/segments that contain said
entity and form a dummy “document” out of them. Then this
dummy document will be passed through the same model and
labels will be generated and then filtered by the complete
document labels: a dummy document is not allowed to contain
a type that was not contained in the complete document. The
final labels assigned to the dummy document corresponding
to an entity mention are assigned to the entity mention itself.
If no entity mention is connected to a type that was detected
at the document level, then a non-localized frame is created
for the specific type.
Status Models
g) The ELISA-STATUS model: is composed of three

independent SVM models for urgency, need and relief. Each
model was trained on human-annotated English SF corpus,
machine translations of the Uyghur unsequestered set, and
LDC-CMN dataset. For each language, we extracted both lexi-
cal and affective features. Lexical features included document-
level posterior probabilities for situation frames1, and 500-
dimensional LSA embeddings2. Affective features were ex-
tracted from the following sources: NRC Sentiment-Emotion
lexicon and Emotiword. Affective features were centered,
scaled, and reduced (5 component PCA). Lexical features were
then concatenated and a second-pass dimensionality reduction
(65 component PCA) was applied. Parameters were selected
using a leave-one-language-out validation scheme.

h) The COLUMBIA Urgency model: is the model de-
veloped by the Columbia team which they graciously shared
with us. For checkpoint 1 they labeled the English parallel
data with emotion and urgency labels using a pre-trained
emotion system. The tags were projected to IL and classifier
trained in IL. Pre-trained emotion system: The parallel data
was tagged using LSTM Recurrent Neural Net trained with
a multi-genre English corpus (genres: emotional blog posts,
tweets, news title, movie reviews). For checkpoint 2, used
new sentiment and emotion labels on Set 0 parallel corpora,
to train an urgency classifier and re-trained using self-training

1Obtained using SYSCOMB ELISA S.F. System
2Previously learned from ReliefWeb

with urgency labels on Set 1. Sentiment was used to change
urgency labels to false when sentiment=positive. Parallel
corpora includes REFLEX for IL5 and sentiment labels were
predicted on IL side of parallel corpora. Method for emotion:
used the same LSTM Recurrent Neural Net to tag REFLEX
parallel English data, and English part of set S Method for
sentiment: used the same LSTM that was trained on English
Twitter data.

B. Critical data and Tools
The data used during development were:
• the publicly available GloVe word embeddings were used
to initialize neural network embeddings

• the ReliefWeb and OSC corpora of disaster-related doc-
uments were used to train models

• the HA/DR lexicon was used for term and data selection
• an internal dataset of about 4000 annotated English tweets
was used to train models

• the representative Mandarin, Uyghur and English text SF
datasets were used train and evaluate models.

• the transcribed and translated speech SF sets for Turkish,
Uzbek, Mandarin, and Russian were used to train models.

The main tools and software packages used were:
• Python libraries: NLTK, gensim, Theano, Tensorflow,
Keras, sklearn

• R libraries: xgboost
• Matlab

C. Native informant use
The initial intent was to use the native informant to annotate

a few documents and use their input as part of reinforcement
learning. That idea was abandoned due to time constraints and
reliability concerns: training an annotator to perform the SF
task requires many hours and we still would not be confident
in the annotations provided. Instead we devoted our allotted
time to improving the machine translation as it pertains to the
detection of situation frames. We used the Leidos and OSC
corpora to select English terms relevant to the task, mostly
bigrams with a few trigrams, and had the native informants
translate them to IL5 and IL6. The term list was selected using
a combination of class-relevance and document frequency of
ngrams followed by a round of manual post-hoc filtering. In
total we had 20 NI sessions each spanning 1 hour (10 for each
IL). In all sessions the task was the same: translate salient
n-grams from English to IL to help with MT. We worked
with two informants: Native Informant 3 for IL5 and Native
Informant 6 for IL6. In total we were able to translate around
700 ngrams in IL5 and 975 ngrams in IL6.
Both the native informants in year two appeared consider-

ably less trained compared to the previous year during the first
checkpoint. As a result the number of translated ngrams was
lower than we had hoped for from checkpoint 1.

a) IL5 CP1 meeting, 1 hour: NI3 was easy to com-
municate with and started the task without much confusion.
However, he seemed distracted in some parts of the session
which included a personal phone call several minutes long. He
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Fig. 4. Text Situation Frames reported mean F1 for all constrained submissions across all checkpoints.

also appeared to be delayed by his text entry interface while
typing the translated words in IL5 script. Upon further request
he stayed on a little longer (equal to the duration of his phone
call) after the alloted one hour to help with the task. In total
we obtained translations for 46 ngrams in the alloted time.

b) IL6 CP1 meeting, 1 hour: NI6 was relatively faster,
in part thanks to the fact that IL6 uses Latin script. We were
able to collect 81 n-grams in one hour.

1) Checkpoint 2: Both the native informants appeared to
be better prepared by the second checkpoint.



a) IL5 CP2 meetings, 4 hours: We obtained 305 new
translations in checkpoint 2.

b) IL6 CP2 meetings, 4 hours: We obtained 437 new
translations in checkpoint 2.
2) Checkpoint 3:
a) IL5 CP3 meetings, 5 hours: We obtained 361 new

translations in checkpoint 3.
b) IL6 CP3 meetings, 5 hours: We obtained 458 new

translations in checkpoint 3.

D. The evaluation

Checkpoint 1
At the beginning of checkpoint 1 we got access to the

first batch of development data and the incident description
document.
It was clear from the incident description that the issue SF

types would be particularly significant for this scenario. This
posed a serious problem for us: we had very few training and
evaluation samples for most of the issue types, so performance
on them was not expected to be good - assuming we could
even get a reliable estimate. For “Terrorism or other extreme
violence” we had some confidence, for “Elections, politics and
Regime change” almost all the samples we had were from
the speech SF datasets and similarly for “Civil Unrest and
wide-spread crime”. The choice for checkpoint 1 was to not
generate any “Elections, politics and Regime change” frames
and make submissions both with and without “Civil Unrest
and wide-spread crime” frames.
Evaluation of the individual models was performed by

applying them to the parallel data provided in Set0 and on
machine translations of the same documents. The main goal
was to evaluate robustness to any occurring MT artifacts. Our
examination showed that the models produced much smaller
outputs on IL6 than IL5 but otherwise seemed to perform as
expected, so no changes were made based on this examination.
Overall we made 8 constrained submissions, the results

shown in Fig. 4. For this checkpoint Urgency was produced by
the COLUMBIA system (for all systems but one), while Need
and Relief were produced by the ELISA-STATUS system.
Our primary system, SYSCOMB1, was submitted (across
checkpoints) in three variants
1) the default (and primary) produces “terrorism” and

“crime” frames, but not “regime change” frames
2) SYSCOMB1-crime is the same system, but not allowed

to produce “crime” frames
3) SYSCOMB1+regime is the same system but allowed

to produce “regime change” frames (so it produces all
Types)

All submissions for checkpoint 1 apart from “SYSCOMB1-
crime” include “Civil Unrest and wide-spread crime” frames.
The results are very different in IL5 and IL6. IL5 represents
a best case scenario, where MT and IE are very good and the
performance is in line with the best numbers we got on our
development sets. Performance on IL6 is less impressive, in
large part because of the lower performing MT and IE inputs:

the biggest indicator is the relative performance of “MLP-
LSA” and “CNN-GRU”, where the less robust compositional
model reigns supreme in IL5, but the more robust bag-of-
words model does best in IL6. The system combinations
worked well, with SYSCOMB1 doing a good job of leveraging
the better qualities of its constituent models and being among
our best submissions for both languages. Another interesting
observation is that the baseline model achieved the best
results for Urgency. That turned out to be an accident: it
used the ELISA-STATUS system for Urgency rather than the
COLUMBIA system. In the following checkpoints we would
revisit that.
Lessons Learned:
• We should trust our models more than our own intuition:
despite our worries the crime labels worked out. We
expended on that in checkpoint 2.

• Our in-house Status variable model worked better than
anticipated, therefore we would have to consider switch-
ing to it.

Checkpoint 2
Our main modification for checkpoint 2 involved the use of

EDL linking information to improve localization performance.
As detailed in section IV-A we localize by creating sub-
documents for each entity. For checkpoint 1 the grouping of
entity mentions into entities was done via token matching: if
two mentions had matching strings and entity types they were
grouped into the same entity. For checkpoint 2 we used the
entity cluster IDs as the grouping criterion. To accommodate
the change we also changed the localization algorithm to allow
for more localized frames to be produced, since now the
danger of over-producing was mitigated.
Between checkpoint 1 and 2 we found a small bug in

the Status assignment code that affected Status and Relief
assignment if Urgency was set to True. The bug was corrected
for checkpoint 2.
We made one additional submission, using a revised HATT

model with one extra fully connected layer in the output,
though it made little difference.
Finally, the results of checkpoint 1 forced us to revisit

our assumptions about label trust and Urgency. We had our
concerns about the “crimeviolence” labels and they proved
incorrect, so for checkpoint 2 we added a submission that also
included the “regimechange” labels. We were also concerned
about the Urgency performance achieved by the COLUMBIA
system, so we wanted to try the ELISA-STATUS for more than
the baseline model. For checkpoint 2 we added a submission
addressing both concerns: a variant of SYSCOMB1 that was
allowed the generate “regimechange” labels and used the
ELISA-STATUS system for Urgency.
The results for checkpoint 2 are shown in Fig. 4. For

this checkpoint Urgency was produced by the COLUMBIA
system, except for the baseline and “SYSCOMB1+regime”
models, while Need and Relief were produced by the ELISA-
STATUS system. Overall the change in localization, in con-
junction with the improvements in the MT and EDL in-
puts lead to improved performance (on average) at the



“Type+Place” layer and beyond, though there was little change
in the “Type” results. The inclusion of “regimechange” la-
bels made little to no difference, perhaps indicating that the
samples tagged with “regimechange” are mostly not in the
evaluation set. Finally the systems using ELISA-STATUS for
Urgency vastly outperformed the alternative, indicating we
should switch to it for all systems.
Lessons Learned:
• There is more information in the EDL product that we
are not exploiting enough.

• Having more samples from the Types we are expected to
produce would have been useful. We would not need to
guess if we have the correct version or how to interpret
the definitions.

Checkpoint 3
By this point we did not expect any major changes to the

MT and EDL inputs, since they had both reached a relatively
mature point. The main modification made to the systems
involved hashtags. Our colleagues working on EDL observed
that a lot of the hashtags they encountered contained informa-
tion that would be relevant to the SF task and the hashtags
were in English so they would be useful regardless of MT
performance. For example, consider the hashtag “#oromorev-
olution”; if we could parse it into “# oromo revolution”, then
that would be information that the SF models could use. To
that end we implemented a dictionary-based string splitter that
would split a hashtag to a sequence of valid words (included
in the dictionary). Since multiple splits were possible, the
shortest (lowest number of tokens) was selected. Hashtags
could include names, like “oromo” in the above example, so
to enable parsing we used the EDL linking information: we
added all token appearing in the linked wikipedia page titles to
the dictionary, so the splitter could handle entity names. The
resulting hashtag splitter improved performance very little on
our development sets, but we expected it to contribute more
in cases of low MT performance, such as IL6. This splitter
was used for all of the main models: everything apart from
the baseline and the hierarchical attention model.
The other change was a global shift from the COLUMBIA

to the ELISA-STATUS system for Urgency. All our submis-
sions for checkpoint 3 used the ELISA-STATUS system.
The results for checkpoint 3 are shown in Fig. 4. For IL5

Type we got some mixed results, with most submissions drop-
ping slightly in performance or staying the same compared to
checkpoint 2. This can be attributed to the “CNN-GRU” model
which dropped substantially in performance for checkpoint 3,
for unclear reasons. For IL6 the hashtag parser lead to dramatic
performance improvements of around 0.1 f-score at the Type
level and the improvement cascades down to the other layers.
The hashtag parser presumably did not have this much of an
effect on IL5 because of the much better MT performance
on that language. Finally, the change in Urgency lead to
universally better results, more than doubling the performance
of all models affected.
Lessons Learned:

• It is worth re-iterating that we should trust our models
more.

• Perhaps we need to pay more attention to social media.
Our efforts so far have mostly focused on the more com-
plicated (and interesting) longer documents, but minor
changes in twitter handling can have dramatic effects on
overall performance.

E. Remaining Challenges
• We are still very dependent on MT performance. We
expected to have some MT-independent components for
this evaluation, but they never reached the required
performance. We will hopefully have them ready by next
time.

• We should take a closer look at social media, which
may have received less attention than the other document
categories. The relatively simple addition of a tag/name
parser gave us a very large performance boost.

• With increased data we saw improved performance from
the more complicated networks. We expect that trend to
extend into the future, as more data is released. Hopefully
that will allow us to use more ambitious approaches.

• Perhaps in time we can have an evaluation with all the
data annotated from the start. In 2016 the evaluation
results were very different from the feedback scores
received during the evaluation. Time will tell if 2017 will
be similar.

V. Situation Frames from Speech
To produce situation frames from speech we followed

a similar approach with the one described in the previous
sections for text documents. An overview of our system
is presented in Fig. 5. The machine translation (MT) and
name tagger (NT) components were presented in Sections III
and II respectively. The automatic speech recognition (ASR)
component is language specific and its output is passed to the
MT component to be translated into English as well as the NT
component to extract information regarding place mentions.
Additionally, a relevance classifier can be optionally applied
to the audio input stream, and gives information if an incident
is present in the audio document. Application of the relevance
classifier alters the training procedure as we will explain in
the following subsections.

A. BUT Automatic Speech Recognition (ASR)
The BUT ASR system training was mainly based on ex-

ploiting the NI’s. We follow the direction of the previous
evaluations, and make use of the advanced text-based sys-
tem as described in the previous sections. We tuned system
parameters on a defined held-out set (based on the NI input)
w.r.t. the Word Error Rate (WER).
1) IL5—Tigrinya:
a) Data description: The acoustic model was first

(pre-)trained using the Amharic LRLP corpus (decoded using
our Amharic ASR system [9], and transliterated to Tigrinya
(see Sec. II-A). Training data provided by NI informants (see



Fig. 5. Speech System Pipeline. Speech in the incident language goes through an Automatic Speech Recognition (ASR) component, whose output is utilized
by the Machine Translation(MT) engine and the Name Tagger (NT). Once we have the translated output in English, as well as the place mentions, we identify
the types of incidents occuring in the document and produce situation frames. Additionally a Relevance Classifier can be applied to the raw audio stream to
influence the type confidence scores.

Sec. V-A3 below) were further used to MAP-adapt the system
to Tigrinya. The data statistics are:

• NI data — 1455 utterances in 4.35 hours
• Amharic LRLP corpus — 10k utterances in 14.5 hours
b) Input features: The speech signal was pre-processed

using multilingual+music VAD (Voice Activity Detection) to
discard music and non-speech portions. Multilingual-RDT
(MultRDT) features [9] were used for the experiments. The
major part of the training is similar to the procedure of
November 2016 evaluations, as described in [10].

c) Acoustic model: The acoustic model is constructed
with 269 graphemes. The graphemes act as syllables and hence
position independent GMM-HMM models were trained. The
models trained with G2P based phonemes did not perform
better over grapheme systems. GMM-HMM models were used
to extract alignments and 6 layer DNN with 1024 neurons
were trained with RBM initialization. The DNN is trained with
MultRDT features without any fMLLR transforms.

d) Language model: Unigram model was prepared from
the expect-to-appear word-list, as described in Sec. II-F. 3
million utterances of Tigrinya text were used to build trigram
model. The unigram and trigram models were interpolated
with empirically chosen weights of 0.4 and 0.6, respectively.
The lexicon contains 46k unique vocabulary list.
2) IL6—Oromo:
a) Data description: Training data were provided solely

by NI informants (see Sec. V-A3 below). The corpus contains
1389 utterances in 4.95 hours.

b) Input features: The speech signal was pre-processed
using multilingual+music VAD to remove music and non-
speech portions. Multilingual-RDT (MultRDT) features [9]
were used for the experiments. The major part of the training
is similar to procedure in [10].

c) Acoustic model: The acoustic model is constructed
with 26 graphemes (grapheme=phoneme). GMM-HMM mod-
els were used to extract the alignments, and 6 layer DNN
with 1024 neurons was trained wih RBM initialization. The
DNN is trained with MultRDT features without any fMLLR
transforms.

d) Language model: Unigram model was prepared from
the expect-to-appear word-list, as described in Sec. II-F. 3
million utterances of Oromo text were used to build a trigram
model. The unigram and trigram models were interpolated
with empirically chosen weights of 0.3 and 0.7, respecitvely.
The lexicon contains 39k unique vocabulary list.
3) Native Informant for Speech: The strategy for us was

to obtain as much training data for the acoustic models as
possible. Following our November 2016 strategy, we split the
NI sessions into reading aloud speech and speech transcription.

• Reading:
In the reading sessions, the NI’s were asked to read sen-
tences that were chosen from the Set0 text. The sentences
were chosen based on the frequency of incident-related
English-translated keywords. The list of filtered sentences
was then numbered and formatted into a googledoc. The
NI’s were instructed to read the number in English and the
sentence in their language. We used Audacity to capture
the whole session, after which manual segmentation was
performed based on the English numbers. As a backup,
Appen was asked to record the sessions.

• Transcribing:
In the transcribing scenario, we manually picked a set
of short audio segments from the DEV (Set0) sets. We
concentrated our effort on selecting the biggest variety
of speakers and acoustic environments. We also made
sure the segments were short enough for the NI to easily
transcribe (max. 5 seconds).

This way, we conducted 6 reading and 4 transcribing ses-
sions with IL5 NI’s and 7 reading and 3 transcribing sessions
with IL6 NI’s.

B. UIUC Automatic Speech Recognition (ASR)

The UIUC/UW team used non-native human transcribers to
generate a pseudo-phonetic transcription of the speech, which
was time-aligned using ASR. Transfer learning from related
languages (Amharic, Dinka, and Somali) gave us a simple IL
G2P. Language models were generated from monolingual texts
in the IL.



Non-native human transcription (mismatched crowdsourc-
ing) was acquired from workers hired on Mechanical Turk.
We split each IL .flac file into clips of about 1.25 seconds.
For each clip, crowd workers on Mechanical Turk made 3 to
5 transcriptions. Workers were told to listen to each clip as if
it were nonsense speech, and to write what it sounded like.
They were told not to use complete English words to transcribe
the non-English audio, since we’ve found that nonsense-word
transcritions follow the phonetic content of an utterance better
than English-word transcriptions. We verified the quality of
the transcriptions, and rejected non-compliant workers.
A grapheme sequence in English text may represent a

variety of phone sequences. By applying an English-language
G2P to each space-bounded nonsense word, it is possible to
generate a list of the different possible phone sequences that
the transcriber might have intended to represent. An ASR
trained using these audio clips, with these transcriptions, was
then used to select the phone sequence best matching the
audio. We trained two of these nonsense-English ASRs: one
for IL5 audio, one for IL6 audio. The output of this process is
a set of 3-5 candidate phone transcriptions for each audio clip
(one for each crowd worker). The phone transcriptions were
converted to single-chain FSTs, unioned to form a confusion
network, and mapped from the English phone set into the
phone sets of the ILs using our PTgen software (and using a
cross-language phone map that we have previously published,
and that is distributed on our github site).
An attempt was made to union crowd-worker phone

transcriptions with the phone transcription produced by an
Amharic ASR. The attempt failed, because of file-type in-
compatibility problems that we didn’t have time to solve.
Phone transcriptions were converted to IL5 and IL6 word-

level transcriptions using a dictionary based on monolingual
text data. All space-bounded strings in the text data were
treated as candidate words. Words containing non-native char-
acters (non-Ge’ez for IL5, non-Latin for IL6) were excluded.
Pronunciations of all remaining words were computed using
G2Ps transferred from closely related languages. G2Ps in
both cases were simple symbol tables (FSTs with no more
than 100 arcs each). Symbol tables for both Tigrinya and
Oromo are available in the LanguageNet, but were excluded
from this exercise in order to avoid using any in-language
resources. Instead, an Amharic symbol table was used to
compute pronunciations in IL5, and the union of Dinka and
Somali symbol tables was used to compute pronunciations in
IL6. This process resulted in a pronlex of about 300k entries
per language.
The pronlex for each language was converted to a trie, and

searched for matches to any path through the transcription
confusion network. We attempted a minimum string-edit-
distance search, but found it too computationally expensive.
The first set of generated transcriptions therefore used exact-
match search, but contained very few words longer than about
one syllable. In order to generate transcriptions with better
length statistics, a limited sort of soft-matching was computed
by clustering phones using a soundex-style clustering process,

then performing an exact match on the soundex codes, result-
ing in the second set of generated transcriptions.
The second set contained many words that were OOV to the

MT, especially in IL6, because orthography in both languages
is so variable. For the third set of transcriptions, each output
word was compared to a list of MT unigrams (IV words). If
a word was OOV, we searched for IV words with the same
pronunciation; if found, the IV word was substituted for the
OOV.
The third set of generated transcriptions contained few place

names. For the fourth set of generated transcriptions, each
pronlex was enhanced using a long list of candidate spellings
of IL5 and IL6 placenames, generated by RPI at an earlier
stage of the competition.

C. Core algorithmic approach
Type Classification
The models that handle type classification in this task

are similar with the ones in the text task. However, blind
application of the type classifiers optimized for the text task
yield inferior results in the speech task. We believe this is
attributed to the noise introduced by the ASR component.
Hence, the models need to adapt to this kind of noise. Hence,
we built three different versions of each model based on
different training sets.
In the first version, the system was trained on the represen-

tative Mandarin, Uyghur, and English text SF datasets, as well
as a second set transcribed and translated speech SF sets for
Turkish, Uzbek, Mandarin, and Russian. Although, we were
not provided reference transcripts (thus cannot provide WER)
we are confident that the respective ASR systems provide
reliable transcriptions. In the second version we augmented
the training set with Amharic transcriptions. Although the ASR
system for Amharic did not produce transcripts of the same
quality as the ones for the previous languages we believe
that the similarity with the incident languages can enhance
the performance. Finally, in the third version we included the
Uyghur transcripts from the speech pilot. We expect that the
ASR robustness for Uyghur will be comparable to the ones
built for the two incident languages, thus adapting the models
to the actual testing conditions.
In the following paragraphs, we will present the models that

we employed and highlight their differences with those used
in the text task.

a) CNN-GRU model: The CNN-GRU model is a sim-
ilar model to the one described in IV-A. However, model
parameters are randomly initialized instead of using a pre-
trained Leidos model for initialization. We found that this
“pre-training” step was not beneficial. Moreover, this model
was overfitting faster than its text counterpart. We suspect that
this happens because of the noise introduced by the ASR. The
output layer consists of eleven independent binary classifiers,
and the network was trained using binary cross-entropy.

b) MLP-LSA model: The MLP-LSA model is also a
similar model to the one presented in IV-A. The LSA transfor-
mation was learned using the OSC corpus. Model parameters



were randomly initialized. Again we observed that the model
was overfitting faster than the one trained for the text task. The
output layer consists of eleven independent binary classifiers,
and the cost function employed to train the network was binary
cross-entropy.

c) Model Combinations: For our final system, we fused
the outputs of the CNN-GRU and MLP-LSA models. Fusion
was achieved using a max probability strategy. Combination
with text models or the Leidos model were not found bene-
ficial. Moreover, we developed an additional form of system
combination that operates on the Situation Frame level. This
method was motivated by the need to combine the output of
systems built using different ASRs. In this approach, once
the individual systems have produced types and we transform
them to situation frames, we take the union of the two
SF outputs. If the two systems produced the same frame,
we average the confidence scores. We hope that using this
approach can boost the performance at the localization level.

d) Model Variations: We have variations of the above
models based on the data used to train them. We have found
that the quality of the ASR component can influence the rest
of the pipeline. To that end we training our systems using
different sets to mirror those conditions.

e) Localization: Regarding localization, we follow a
similar approach as the one described in IV-A. However,
whenever a mention is detected we produce localized frames
without any post-process filtering.

f) Relevance Classifier: We can optionally apply a rele-
vance classifier in the audio stream. The relevance classifier is
a SVM classifier using a 2nd degree polynomial kernel trained
on low-level audio features to which we appended ivectors.
The low-level acoustic features include various statistical
functionals of speech properties (such as pitch, energy, and
jitter) and were extracted across different languages to avoid
capturing information specific to a particular language. Appli-
cation of the relevance classifier alters the training procedure
of the type classifiers. Since the goal of the type classifiers is to
produce p(type) and the the purpose of the relevance classifier
to produce p(relevance) we need to make the type classifiers
generate conditional probabilities p(type|relevance). Hence,
when we apply the relevance classifier, the models are trained
only with documents that contain at least one incident that
would lead to a situation frame.

D. Critical data and Tools
The data used during development were:
• the publicly available GloVe word embeddings were used
to initialize neural network embeddings

• the representative Mandarin, Uyghur and English text SF
datasets were used train and evaluate models.

• the transcribed and translated speech SF sets for Turkish,
Uzbek, Mandarin, Amharic, Uyghur, and Russian were
used to train models.

The main tools and software packages used were:
• Python libraries: NLTK, gensim, Theano, Tensorflow,
Keras, sklearn

• R libraries: xgboost
• Matlab

E. Native informant use
See Section V-A

F. The Evaluation
In this task we had just one checkpoint. We participated on

the constrained scenario of both incident languages and in all
three evaluation layers. We submitted multiple systems. The
naming of the systems can be resolved as:

• Incident Language
• Which ASR system was used. If the naming include
the string ’BUTUIUC’ both the ASR systems were used
to produce SFs. The SFs were combined using a union
scheme with probability averaging.

• Application of Relevance classifier, e.g R means used NR
not used. If the naming include the string ’RNR’ both
the ASR systems were used to produce SFs. The SFs
were combined using a union scheme with probability
averaging.

• Which datasets were used to train the type classifiers.
Systems that include V3 in their names include the repre-
sentative Mandarin, Uyghur and English text SF datasets
as well as the transcribed and translated speech SF
sets for Turkish, Uzbek, Mandarin, Amharic, Uyghur,and
Russian. Systems with V4 are same with V3 except that
Uyghur have been left out.

• Which Type classifier was used
Hence IL5_BUT_NR_V3_MLP refers to a system applied for
incident language 5, using the ASR from BUT, without the
relevant classifier, employing the MLP type classifier which
was trained on the set described by V3.
For IL5 we submitted ten systems for the constrained

scenarios, and participated in all 3 evaluation layers. The
results based on the feedback provided by the organizers are
presented in Table V-F.

TABLE XI
ELISA IL5 SF from Speech Results

System Relevance Type TypePlace
IL5_BUT_R_V3_MLP 0.5048 0.2605 0.0118
IL5_BUT_R_V3_CNN_GRU 0.5418 0.2937 0.0144
IL5_BUT_R_V3_SYSCOMB1 0.5315 0.2833 0.0136
IL5_BUT_NR_V3_CNN_GRU 0.5376 0.3202 0.0132
IL5_BUT_NR_V3_SYSCOMB1 0.5395 0.3321 0.0136
IL5_UIUC_NR_V3_CNN_GRU 0.3268 0.0421 0.0001
IL5_BUT_NR_V4_SYSCOMB1 0.5129 0.3070 0.0122
IL5_BUT_NR_V4_CNN_GRU 0.5104 0.2946 0.0119
IL5_BUT_RNR_V3_SYSCOMB1 0.5576 0.3253 0.0139
IL5_BUT_NR_V3_MLP 0.4698 0.2603 0.0112

We observe that for the first evaluation layer (Relevance)
a system using the relevance classifier provides the best
performance. However, the for the second layer (Type) the
system does not use the relevance classifier. Moreover, the
type classifiers based on CNN-GRU provide better results than



the MLP ones. This indicates the ASR outputs have reliable
outputs, since recurrent models fail when the input is poor,
and the MLP models (which can be considered as Bag Of
Words models) outperform the rest. For Type classification
the best performing system is the combination of CNN-GRU
and MLP (named SYSCOMB1). Finally, the performance
on the third layer (TypePlace) is underwhelming. This was
observed in the Speech Pilot task (Mandarin and Uyghur).
We believe that the way this task is organized in inherently
problematic. For example, in IL6 “Ethiopia” has about 244
different spellings. Thus, it is very unlikely a name detected
by our system to match exactly the reference on mention
string level. To solve this problem, in the short term (for
this evaluation), you could collect all localization results from
system output and reference, and create equivalence classes.
This should not be difficult to do. We should integrate EDL
into speech SF localization, so we can evaluate localization
based on KB IDs/English translations, or simply use entity
linking and clustering scores.
For IL6 we submitted ten systems for the constrained

scenarios, and participated in all 3 evaluation layers. The
results based on the feedback provided by the organizers are
presented in Table V-F.

TABLE XII
ELISA IL6 SF from Speech Results

System Relevance Type TypePlace
IL6_BUT_NR_V3_MLP 0.7166 0.2780 0.0214
IL6_BUT_NR_V3_CNN 0.6852 0.1953 0.0149
IL6_BUT_NR_V3_SYSCOMB1 0.6879 0.2266 0.0164
IL6_UIUC_NR_V3_MLP 0.6252 0.1160 0.0046
IL6_BUTUIUC_NR_V3_MLP 0.7062 0.2655 0.0098
IL6_BUT_R_V3_MLP 0.7409 0.2402 0.0152
IL6_BUT_R_V3_SYSCOMB1 0.7205 0.2039 0.0132
IL6_BUT_NR_V4_MLP 0.7188 0.2810 0.0212
IL6_BUT_R_V4_MLP 0.7412 0.2368 0.0151
IL6_BUT_NR_V4_SYSCOMB1 0.7039 0.2504 0.0174

Similar to IL5 a system using the relevance classifier
provides the best performance for the first evaluation layer,
and a system without it is outperforming the others in terms
of the second layer (Type). Furthermore, we notice that in this
case the MLP models give the best performance. Combination
of MLP and CNN-GRU models actually hurts the system.
This indicates the ASR outputs are not very reliable, and our
system’s decision are based on detected words. For the third
layer (TypePlace) the results are similar to IL5.
Lessons Learned
• ASR performance is crucial to this task. If ASR output
is poor the errors propagate to the rest of the pipeline.

• Data gathered from the speech task can help the training
of models in the text task.

• Having some amount of annotated data (reference tran-
scripts) for building a “reliable” ASR can help boost
system confidence of the estimated types as well as
improve localization information.

• The localization needs to be reorganized to something
more meaningful.

G. Remaining Challenges

• The pipeline we employ is “fragile”. Errors in a compo-
nent propagate throughout the pipeline and hurt perfor-
mance.

• We are still very dependent on MT performance. We
expected to have some MT-independent components for
this evaluation, but they never reached the required
performance. We will hopefully have them ready by next
time.

• With increased data we saw improved performance from
the more complicated networks. However, if ASR output
is not satisfactory simpler models work best.
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