
Coney Island: Combining jMax, Spat and VSS for Acoustic Integration of Spatial and
Temporal Models in a Virtual Reali ty Installation

Robin Bargar* (rbargar@ncsa.uiuc.edu), Francois Dechelle§ (Dechelle@ircam.fr), Insook Choi*,
Alex Betts*, Camil le Goudeseune*, Norbert Schnell§, and Olivier Warusfel§

*University of Illi nois at Urbana-Champaign, 405 N Mathews, Urbana, IL 61801
§IRCAM, 1 Place Igor Stravinsky, 75004 Paris, France

Abstract
We present a case study of sound production and performance that optimize the interactivity of model-based VR
systems. We analyze problems for audio presentation in VR architectures and we demonstrate solutions obtained by a
model-based data-driven component architecture that supports interactive scheduling. Criteria and a protocol for
coupling jMax and VSS software are described. We conclude with recommendations for diagnostic tools, sound
authoring middleware, and further research on sound feedback methods to support a topology of interacting observers.

1. The VR Audio Problem Space
We configure Virtual Reality to provide real-time
interaction with geometric and temporal models. The
dominant medium for displaying immersive VR is
animated computer graphic images. While VR is frequently
referred to as a “space” based upon 3D models, in most VR
systems the primary physical space is constrained to a flat
surface where an image is projected. A virtual camera view
is generally a tetrahedron with its apex at the viewing
position defining a viewing volume expanding
symmetrically into a geometric 3-space. Stereo image
computation generates depth cues by offsetting 2D images.
For the most part visual “3-D” immersion results from 2D
frontal image projection enhanced by interactive camera
mobilit y. Introducing sound into a flat, frontal visual field
often induces cinematic solutions: imitating space rather
than simulating space. That is, fixed resonance
characteristics and fixed timing of wave propagation, rather
than spatio-temporal simulation. 3D audio has been touted
as an important attribute of VR. However most VR systems
presented at academic conferences and trade shows only
provide rudimentary sound file playback, often coupled to
MIDI-enabled devices. The significant limitation in this
approach is the absence of information concerning an
interactive simulation. Pre-recorded sounds and MIDI
sequences can provide at best a rough approximation of the
behavior of a simulated system. They are often observed to
be mere imitations which cannot provide an accurate
insight into the states of a real-time simulation. While they
may confirm simple interaction, pre-determined sounds
minimize the acoustic relevance of the degrees of freedom
in a simulated system.

If auditory feedback can improve the user’s spatial
orientation and sense of real-time interaction, then why is
VR audio typically limited to triggering pre-recorded sound
file or MIDI file playback? A short answer is “ there are no
standard alternatives.” Unlike the comprehensive hardware
solutions provided by proprietary graphics subsystems,
there have been few vendor-supported efforts toward sound
synthesis subsystems. Historically it has proven diff icult to
argue for the commercial profitabilit y of sound synthesis on
general computing platforms.

There are several problem areas to establish and
maintain a flexible audio development subsystem in
VR. These include real-time scheduling and
synchronization of sounds, graphics and control signals
from interactive sensors. At a higher level of
abstraction, grammars are needed for describing sound
synthesis in relation to VR models and events.
Traditional audio paradigms such as multi -track
recording and sample-based or orchestra-score
descriptions of sound production, were developed in an
era when virtual experiences could only be imitated.
From our experience these paradigms are not
compatible with the coherent spatial and temporal
models central to VR.

In this paper we discuss sound production and
performance that optimize the interactivity of model-
based virtual systems. We present a case study of a VR
installation called Coney Island. The functional
software roles of the Coney Island architecture include
(1) a VR authoring and rendering system, (2) Sound
Synthesis engines, (3) Spatial Audio DSP, (4) Sound
Authoring, and (5) Scheduling and Synchronization of
sounds with graphics and simulations. Software from
several research centers was combined to fill these
roles: (1) A VR authoring environment called
ScoreGraph (Choi 1998) was used to create the Coney
Island simulations, graphics, message passing and
interactive scheduling. ScoreGraph provides the context
that determines the requirements for interoperabilit y of
sound production modules. (2) Sound synthesis was
provided by VSS (Bargar 1994), including synthesis
engines from the STK toolkit (Cook 1995), and by
jMax. (3) Distance and directional cues for sound
sources were generated using Spatialisatuer (Spat) (Jot
1995) running in jMax. (4) VSS performs VR data
interpretation to generate synthesis parameter control
messages. (5) These messages are exchanged and
scheduled in real-time by ScoreGraph and VSS. Our
discussion will proceed from the VR environment to the
VR software architecture, and then to sound production.

2. The Coney Island Scenario
Coney Island is a VR installation designed to explore and
demonstrate advanced auditory display of spatial and
temporal models1. The installation provides an interactive
tour of an archipelago of mechanized islands that comprise
a fantastic carnival playground. The islands are driven by
simulated mechanics and particle system dynamics, as well
as advanced geometric, lighting and camera models for
computer graphics. For each island MIDI-enabled drum
pads allow up to ten observers to play simultaneously.
Simulations provide a time-criti cal environment where
players can impart forces and see and hear the resulting
mechanical actions and particle system colli sions. The tour
continues underwater where the players can impart force to
currents that activate sound-producing clusters of floating
objects. In each case equations of motion convert the forces
into motions of graphical objects and in parallel into
sounds.

Coney Island was designed as a case study for close
coupling of audio signal processing to spatial and temporal
VR paradigms. Multiple independent sound-producing
events are determined by sensor data combined with
simulated mechanics of rigid polygonal bodies and particle
systems. Sensor, graphic and sound events must be
scheduled to provide satisfactory temporal feedback. At the
same time overlapping audio events must be rendered in a
spatial model that allows each player the proper orientation
with respect both to a view of the virtual world and a
position in the real world adjacent to other players.

Hardware Configuration
IRCAM Studio 5 was arranged with a large-format video
projection on the wall opposite its entrance. Graphics and
simulations were rendered in ScoreGraph on an SGI Onyx
and the image transmitted to the projector. Figure 1 shows
ten MIDI-enabled drum pads positioned in the center of the
installation facing the projection screen, with a solo
joystick on the left and sound computation hardware on the
right. Signals from players’ actions were input to
ScoreGraph simulations, and the resulting movement
events passed to graphics and sounds. Figure 2 shows a
group of players at the IRCAM installation; Figure 3 shows
the players’ view of a Coney Island scene.

1 Coney Island was presented at IRCAM during the June
1999 Portes Ouvertes.

The sound system consisted of three multi-channel
computer sound sources, a mixer and a 4-channel
diffusion system with monitors positioned in the
corners of the room. Audio software performed in real-
time on linux, NT and Irix platforms. Data was
transmitted from ScoreGraph to VSS and from VSS to
jMax using udp. Audio sources included 2-channel VSS
on Linux and NT PCs, 2-channel jMax on Linux PC
and 4-channel jMax on an SGI Octane.

3. Coney Island: VR architecture and graphics
Coney Island uses a software framework named
ScoreGraph to organize its numerical simulations and
interactive graphics, to manage input from a user
interface, and to send audio control signals to VSS.
ScoreGraph is a system for authoring and managing the
presentation of interactive, real-time graphics and
sound applications. ScoreGraph provides a scheduler
and libraries for data computation and multi-threaded
communication. A ScoreGraph application consists of
reusable software modules written in C++ and a script
that specifies the configuration and behavior of those
modules at runtime. Application components are
roughly divided into input devices, computational
models, and graphics and sound displays. Individual
components, called nodes, are organized into a directed
graph, the edges of which represent control signal flow.
When the application is run it is organized into parallel
threads that manage the execution of its nodes. The
service rates of the threads are independent of each

Figure 1: Coney Island setup at IRCAM

Figure 3: Players' view of Coney Island.

Figure 2: IRCAM visitors interact with Coney
Island simulations using MIDI drum pads.

other (and, notably, independent of the graphics frame
rate), and may in fact change as the real-time system
evolves. Coney Island integrates user input from ten MIDI
drum pads, physically-based mechanical simulations, and
three-dimensional geometric models created with
Alias|Wavefront’s Maya. The application runs on a four
processor Silicon Graphics Onyx 2 with an Infinite Reality
2 graphics board.

Graphics and Particle Simulations
The visual space presented in Coney Island includes five
islands floating on top of ocean waves, each of which
contains a mechanical game. The games are similar to
pinball: users apply forces to move particles toward some
goal. Each island consists of a hierarchical geometric
model created in Maya, and a physically based particle
simulation to drive the animation. The particle systems
model the forces applied by the user, particle colli sion
against other particles and against three dimensional
geometry, particle mass and radius, gravity, and friction.
The differential equations used to compute the physical
simulations require a consistent service rate, which was set
to 20 Hz. Unfortunately, the graphics frame rate is not
predictable, and at a given time falls in the 12-15 Hz range,
depending upon which island is being visited and how
much particle activity there is. Therefore the particle
simulations and OpenGL rendering code are run in distinct
parallel processes.

Interactive Presentation and Large-scale Form
The Coney Island experience is organized as a tour of the
islands, with periodic transitions underwater to tour the
debris leftover by the history of gaming on the islands. The
computer graphics camera travels to each region where
visitors spend some time interacting. Although the overall
organization and quality of the presentation is specified by
the environment’s designers, many of the details of the
presentation, in particular the camera angles and the order
and timing of events, are controlled by intelli gent
algorithms. During the tour, the order in which the islands
are visited is chosen at random, although each island is
visited only a single time. Once at an island, the system
becomes sensitive to the level of user activity. If there is
no immediate user input, the game will demonstrate itself
by briefly running automatically. An algorithm chooses
camera positions and camera editing patterns, based upon
which parts of an island are active due to user input. The
camera algorithm is designed to produce results that make
sense cinematically and help explain the operation of the
game mechanisms. After a game has been running, a new
island will be visited if the amount of input dies down.

A basic feature of the ScoreGraph system is that the
directed graph that organizes an application can be
reconfigured as it runs. New processes can be started,
existing processes may be shut down or reduced in
computational load, and connections between nodes can be
made or broken. In Coney Island this occurs each time an
island is visited. The drivers for the MIDI drum pads are
reconfigured to control a different mechanism. A new
particle system is started and the previously running
simulation is shut down. This provides a smooth scene

change between processes that are essentially separate
applications.

4. Coney Island Sound Production
Coney Island includes three classes of interactivity
with sounds:
• action space performance and extended causality;
• active navigation and direct manipulation of

synthesis parameters;
• passive navigation and positional influences upon

auditory space in environmental dynamics.

Action space performance generates sounds from user
actions synchronized to motion-based events
displayed graphically. Players influence sound
production by engaging with motion simulations, an
application of the Generative Mechanism principle
discussed by Choi (2000a). Mechanical frictions and
particle colli sions in the islands are applied to control
STK physically-based and modal synthesis
instruments, creating quasi-realistic friction and
colli sion sounds; at the same time the data is applied
to granular synthesis implemented in jMax to produce
particles of speech. The palette ranging from realistic
to metaphorical sounds is a compositional design
applied to virtual locations and simulated mechanics.
The Coney Island grand tour brings about transitions
from realistic to metaphorical sounds, realized at the
level of the sound particle. Underwater locations
abandon realism in favor of granular speech
assemblages determined by wave equations stirred up
by percussion pad forces.

Active navigation and direct manipulation of synthesis
parameters occurs in select underwater regions where
a single player may use a joystick to navigate a small
animated submarine. The VR camera follows
automatically. The submarine is constrained to
traverse floating abstract surfaces, and its position on
each surface is applied to the tuning of sound
synthesis parameters by mapping position to a high-
dimensional parameter control space (Choi 2000b). In
these regions the particles of speech may be
transformed into intelli gible phrases.

Passive navigation with positional influences occurs in
regions where the sounds are determined by dynamics
that are independent of the players’ actions, while the
position of the camera determines activation of the
sound sources and spatialization of the resulting
sounds. These sound sources are distributed in a
designated region under the islands, represented
visually as a field of floating historical debris. When
activated by camera proximity these debris emit
complete speech excerpts from historical recordings.
Four parallel Spat patches in jMax simultaneously
process four source positions to create distance and
directional cues. The camera position activates no
more than four sources simultaneously so that all
sources may be scheduled in one of the four Spats.

jMax Configuration
Despite its architecture that offers interesting features for
a use in a distributed application framework, the jMax
environment is used most of the time as a ``standalone''
application. An application as a synthesis engine
integrated in a larger distributed application have been
approached in a previous version of jMax, the MAX/FTS
environment, with its multi -client capabilities (Dechelle
1995, Dechelle 1996). However, the use of jMax as a
synthesis engine driven by data coming from another
environment has not been tested prior to the
implementation of the Coney Island installation.

The chosen implementation has been to add to jMax
network communication objects, using UDP as transport
protocols. The udp object receives on a UDP socket a
stream of datas of simple types (numbers and strings),
encoded with the same protocol as used in the
communication between jMax's JAVA user interface and
real-time server (Dechelle 1999a, Dechelle 1999b). The
udp object outputs messages that can be processed by a
usual control patch. The udp objects were used to receive
from VSS data coming from the virtual reality processing.
The formatting and scaling was then realized by patches
using the standard jMax objects set, and the results were
used to drive both granular synthesis and Spat. The choice
of this architecture offers several advantages: portabilit y,
inter-operabilit y, flexibili ty and good latency.

VSS Configuration
VSS communicates with several other real-time audio
protocols, such as Midi, OpenSound Control (Wright
1997), real-time audio streaming, RAT Mbone
teleconferencing (Varakliotis 1998), and Jmax. This
flexibilit y has allowed VSS to be used for diverse
integrated applications: Midi controllers driving software
sound synthesis; data from scientific applications driving
Midi and OpenSound Control sound generators; streaming
sound and control data from a musical instrument to a
Max patch running on a computer across campus, and
then streaming the sound back to the instrumentalist; and
in the present case, sending control signals from a virtual
environment (VE) to a real-time 8-channel sound
spatializer (while another VSS, also controlled by the VE,
computes the sound being spatialized). All this can be
done with VSS running under operating systems including
several versions of Irix, Linux, and Windows.

Such interoperabilit y is made possible by VSS's flexible
internal message-passing architecture, and by its low-
overhead C++ class hierarchy. C has become a de facto
machine-independent assembly language; most packages
have a low-level interface written in C or C++, and it has
proven fairly straightforward to embed such interfaces in
wrappers in the form of shared libraries (DSO's or DLL's),
which is how all but the very core of VSS is constructed.

The connection between VSS and Jmax is buil t on an
internet-domain socket. As far as Jmax is concerned, VSS
looks like just another Jmax patch running on a remote
machine. First, this "patch" in VSS is initialized to
establish a communications socket with a hostname and

port number, where it expects Jmax to be listening.
Then it can receive commands from other parts of
VSS (other "actors") which cause it to send data
messages through the socket. Upon termination, it
closes the socket cleanly. Part of this installation used
both Jmax and VSS on the same machine. In this case
VSS acted solely as controller, not synthesizer, so it
did not need to access the sound hardware; Jmax
therefore had its usual exclusive access to the sound
hardware.

The format of the data messages sent from VSS to
Jmax is an internal Jmax format. The C source code
which encodes and decodes these messages into C
structures was provided by IRCAM. The VSS shared
library correspondingly encodes and decodes these C
structures into the message format internally
understood by VSS. For this project a simple interface
sufficed. From the point of view of other actors in
VSS, the Jmax actor was something to which they
could send a command in the form of a small number
of strings, integers, and floating-point numbers. This
involved a certain amount of copy/pasting in the C++
code, but kept the code simple and reliable; this was a
primary concern given the short amount of testing and
stabili zing time we had. A more general interface
would allow arbitrarily long argument lists, but would
also demand a formal description of such lists instead
of encoding instances on a case by case basis. We
considered streaming the individual audio channels
from VSS to Jmax over Ethernet, but the possibilit y of
dropouts was a concern (eight uncompressed 44.1
KHz audio signals, a sustained rate of over 5 megabits
per second, is impractical over 10base-T ethernet).
Since the computers running VSS and Jmax were
physically close to each other, an ADAT optical audio
cable sufficed for our application.

5. Discussion
From Coney Island we are able to assess four areas for
further development:
1. diagnostic tools for aiding the cross-platform

coupling of software synthesis modules,
2. middleware for coordinating virtual environments

and audio architectures,
3. multiple-user solutions for interactive

environments, and
4. sound feedback for enhancing group interaction

(1) The installation demonstrates that it is feasible
with current operating systems to realize a distributed
real-time application combining virtual reality and
complex sound processing. But once the
communication architecture is established, a deep
lack of analysis and debugging tools becomes
obvious: the global latency, from user action to sound,
cannot be measured, and no guarantee can be given on
its upper bound. The use of MIDI to transmit users’
actions was the source of greatest latency: an
intelli gent MIDI filter was required in ScoreGraph to
discard redundant values when user activity increased.
Without the filter when latency increased users tended

to repeat their actions as they searched for the system
response, exacerbating the delay. Potential diagnostic
methods are discussed by Brandt (1998).

(2) The independent Sound Authoring layer of VSS was a
useful mediator for interpreting VR data and converting it
into synthesis instructions for both jMax and VSS.
Although VSS supports a library of synthesis engines, the
Authoring architecture functions as an independent middle
layer which can be applied to control alternative sound
production engines once message-passing has been
implemented. During Coney Island development the
question was raised why VSS Authoring and scheduling
capabiliti es could not be implemented as a jMax subpatch.
The VSS architecture is specifically designed to separate
the process of data transformation and synchronization
from particular sound synthesis patches or languages. In
Coney Island this division of labor made it possible to
combine the optimal capabiliti es of VSS and jMax: real-
time STK instruments in the former; granular synthesis
and Spat in the latter. This agnostic position with respect
to sound production is relevant for the further
development of independent real-time synthesis engines
on multiple platforms.

(3 - 4) Coney Island extends previous VR composition
projects at NCSA by investigating strategies for multi -
user participation. From a musical perspective we
examine the modernist proposition to “engage the
audience”, anticipating wired/wireless networked and
distributed participants. Technology changes the audience
engagement problem into a perceptual feedback problem:
if an entire audience participates in a musical performance
then how do they know what they are doing? And how do
they recognize the results of their actions? VR
applications typically avoid shared representations by
providing a single-user first-person “shooter” perspective.
One person, one point of view, one control providing
isolated feedback requiring minimal disambiguation. The
relevance of audio decreases with the decrease of
ambiguity.

Multi -player solutions are needed. We propose
development of composition solutions to accommodate a
topology of interacting observers. By sound enhancing
group interaction we envision alternatives to the
isolationist perspective. Coney Island adopts a 1:1
feedback system: each player controls a unique object
(avatar); avatars share a common display space;
movement constraints and camera automation ensure that
players can see and hear their avatars at all ti mes. The
scalabilit y of this approach for large audiences is
questionable. Statistical methods are a candidate for
further investigation Devices such as MIDI drum pads
bypass the need for technical expertise at the interface.
But the feedback problem remains: to encourage group
interaction while displaying the relevance of interactive
input from each participant.

6. References
Bargar, R., Choi, I., Das, S. and Goudeseune, C.

"Model-based interactive sound for an immersive
virtual environment." Proc. Int. Computer Music
Conference, Aarhus, Denmark: International
Computer Music Assn., pp. 471-474, 1994.

Brandt, E. and Dannenberg, R. "Low-latency Music
Software Using Off-the-Shelf Operating Systems."
Proceedings of the ICMC98. San Francisco, 1998.
ICMA. pp. 137-41.

Choi, I. “ScoreGraph: dynamically activated
connectivity among parallel processes for
interactive computer music performance.”
Proceedings of the ICMC98, San Francisco, 1998.
ICMA. pp. 527-535.

Choi, I. "Gestural Primitives and the context for
computational processing in an interactive
performance system." In Trends in Gestural Control
of Music. Battier and Wanderly, eds., IRCAM, Paris.
2000.

Choi, I. "A Manifold Interface for Kinesthetic
Notation in High-Dimensional Systems." In Trends
in Gestural Control of Music. Battier and Wanderly,
eds., IRCAM, IRCAM, Paris. 2000.

Cook, P. “A Hierarchical System for Controll ing
Synthesis by Physical Modeling.” In Proceedings of
the 1995 International Computer Music
Conference. San Francisco, 1995. ICMA.

Dechelle, F. and De Cecco, M. “The Ircam real-time
platform and applications.” In Proceedings of the
1995 International Computer Music Conference.
San Francisco, 1995. ICMA

Dechelle, F., De Cecco, M., Maggi, E.,. and Schnell ,
N. “New { DSP} applications on FTS.” In
Proceedings of the 1996 International Computer
Music Conference, San Francisco, 1996. ICMA.

Dechelle, F., Borghesi, R., De Cecco, M., Maggi, E.,
Rovan, B. and Schnell , N. “ jMax: an environment
for real-time musical applications.” Computer
Music Journal, 23(3):50--58, 1999.

Dechelle, F., De Cecco, M., Maggi, E.,. and Schnell ,
N. “ jMax: recent developments.” In Proceedings of
the 1999 International Computer Music
Conference, San Francisco, 1999. ICMA

Jot, J-M. and Warusfel, O. "A real-time spatial sound
processor for music and virtual reality applications."
Proceedings of the ICMC, San Francisco, 1995.
ICMA. pp. 294-95.

Varakliotis, S., Hodson, O., and Hardman, V. "A
software platform for multi -way audio distribution
over the Internet." In _Audio and music technology:
the challenge of creative DSP_IEE Colloquium,
London, November 1998.

Wright, M. and Freed, A. "OpenSound Control: A
New Protocol for Communicating with Sound
Synthesizers." Proceedings of the 1997 ICMC,
Thessaloniki, 1997. ICMA. pp. 101-104.

