Background	Topic labeling	Approaches	Results	Acknowledgements
000		000000	O	O
Topic lab	eling of speech	in low-resou	irce langua	ages

Camille Goudeseune Mark Hasegawa-Johnson

Beckman Institute, UIUC

e de la companya de l	Topic labeling	Approaches 000000	Results O	Acknowledgements O
Low-resource	languages			

About a dozen languages have transcribed audio.

300 **low-resource** languages lack transcribed audio.

6,700 zero-resource languages lack even monolingual text (Wikipedia).

Can't recruit people to transcribe 1000 hours of speech to train an ASR.

- Too slow: might need the ASR tomorrow, not next year.
- Too expensive to do for many languages at once, instead of as needed.

Background	Topic labeling	Approaches	Results	Acknowledgements
⊙●⊙	00000	000000	O	O
Mismatched	crowdsourcin	g (MC)		

Instead of transcriptions from native speakers:

- Split recordings into 1 second clips. (Short clips will be transcribed better.)
- Crowdsource 10 English speakers to transcribe each clip, as nonsense syllables 'fa kablee grakoo,' 'foga lee ragu,' etc.
- Restitch each recording's set of transcriptions.
- Build a phone lattice for each recording.

Implemented with OpenFst.

The error rate beats that of wrong-language ASR, for languages from many families. (*Adapting* wrong-language ASR using MC can reduce error rate, but that's another talk.)

Background	Topic labeling	Approaches	Results	Acknowledgements
	00000	000000	O	O
References				

Mismatched Crowdsourcing and Mismatched Transcription

- Open-source software github.com/uiuc-sst/PTgen
- "Acquiring speech transcriptions using MC" dl.acm.org/citation.cfm?id=2887007.2887182
- "Adapting ASR for under-resourced languages using MT" doi.org/10.1109/ICASSP.2016.7472797

Background	Topic labeling	Approaches	Results	Acknowledgements
000	●0000	000000	O	O
Goal and	motivation			

Given dozens of hours of recorded speech, quickly make sense of it by tagging it with HADR **Topics**:

- Civil unrest / widespread crime
- Elections / politics
- Evacuation
- Food supply
- Infrastructure
- Medical assistance
- Shelter
- Terrorism / extreme violence
- Urgent rescue
- Utilities / energy / sanitation
- Water supply

Background	Topic labeling	Approaches	Results	Acknowledgements
000	○●○○○	000000	O	O
Task				

Input:

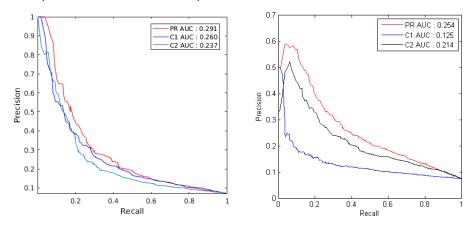
recorded speech (radio, Internet radio, videos from social media)

Output:

to each brief segment, assign a probability $0 \le P \le 1$ for each topic.

 $(0.14, 0.003, 0.01, \ldots, 0.31)$

Task performance is measured with a precision-recall **curve**, so topic labelers can trade off precision vs. recall.



Background Lopic labeling Approaches Results Acknowledgements 000 000000 0 0 0		and the second second second	A	C	
	Background 000	Topic labeling	Approaches 000000	Results O	Acknowledgements O

Performance evaluation: Area Under Curve

- Finely sweep a threshold *t* from 0 to 1. At each step:
 - For each utterance,
 - Define the guess as those topics whose probability exceeds t.
 - Count the guess's true positives, false positives, and false negatives.
 - Accumulate those into running totals.

Yes, utterances get unequal weights! That's OK.

- From those running totals, calculate the precision and recall (one point on the curve).
- Measure the AUC: sum the area of lower trapezoids.

Background Topic labeling Approaches Courses Acknowledgements of the course of the cou

For each utterance, PTgen outputs an ASR-like phone lattice. To transform that into a vector of topic probabilities:

- From a low-resource word list and G2P, make a pronunciation lexicon, a map from words to phone sequences.
- Compose the phone lattice with that lexicon to make a word lattice.
- Traverse best paths through that word lattice to make word sequences, aka probable transcriptions.
- Send the transcriptions to a topic evaluator.

To label topics for a huge phone lattice:

• Modify all four of these steps...

~	and the second second second			
Background	Topic labeling	Approaches	Results	Acknowledgements
000	00000	•00000	O	O

Common steps that end each approach

- Get a few hundred probable transcriptions of the utterance.
- Machine-translate each one to English.
- Send each English transcription to a topic evaluator ("Woeful! My crops all burned down are." → "Food Supply")
- Combine those evaluations to get each topic's net probability of being applicable to this utterance.

Next, five approaches. . .

Background	Topic labeling	Approaches	Results	Acknowledgements
000	00000	o●oooo	O	O
1. Limit the	vocabulary.			

In agglutinative languages, the lexicon can exceed 1M words, too big to compose with a phone lattice.

Failed workaround: **keyword spotting.** Sequentially composing singleor thousand-word lexicons still eventually exhausts RAM.

Simpler workaround: **restrict the lexicon** to only a few thousand words, words that are statistically more relevant to the Topics. Although this increases overall WER, many of these word errors don't hurt topic labeling.

Background	Topic labeling	Approaches	Results	Acknowledgements
000		000000	O	O
0 0 0 0				

2. fstviterbisearch, not fstcompose.

To bound the size of the composed word lattice and bound how much RAM the composing requires,

instead of pruning *after* composition, run Viterbi beam search *during* composition.

Customize OpenFST's compose.h: when adding an outgoing arc from a state, maintain a std::priority_queue to add only the *n* least costly arcs. This keeps each state's outdegree $\leq n$.

Background	Topic labeling	Approaches	Results	Acknowledgements
000	00000	000000	O	O
3. "Joker"	phone.			

To shrink a phone lattice:

At each state, keep only the 5 most likely outgoing arcs. Collapse the rest into one joker-labeled arc, of the same net likelihood, that matches *any* phone.

Why not just prune all the low-likelihood arcs?

Pruning bogusly removes the noise inherent in probabilistic transcription. Instead of *removing* that noise, the joker arc *replaces* it with uniformly distributed noise.

Background	Topic labeling	Approaches	Results	Acknowledgements
000	00000	0000€0	O	O
4. fstra	ndgen <i>before</i>	fstcompose.		

Conventional:

Compose the phone lattice with the lexicon to get a word lattice. Then take n random paths through the word lattice to get n word sequences.

Cheat:

First take *n* random paths through the phone lattice to make a $500 \times$ **tinier** phone lattice: initial state with arcs to *n* chains. Then compose that tiny lattice with the lexicon to get *n* word sequences.

Information is lost: the composed FST's sausages are fewer and smaller. But the cheat works, and it's $10\times$ faster.

- Calculate a topic's probability by naively counting words found in a few hundred topic-related phrases *in the original language*, then normalizing all topic probabilities to sum to unity.
- For any word that appears in phrases for multiple topics, amortize its weight over all those topics.
- Low quality, but blazingly fast because no translation is needed.

Background	Topic labeling	Approaches	Results	Acknowledgements	
000	00000	000000	•	O	
Interim results					

Work in progress. No hard numbers yet.

Languages with ground-truth scoring data are Uyghur and Uzbek.

- fstviterbisearch quickly composes FSTs as big as 10 GB, using well under 32 GB of RAM.
- Aggressively constraining the lexicon to as few as 500 words scores reasonably well, though not as high as the state of the art.
- fstrandgen before fstcompose also scores surprisingly well.
- Naive topic spotting in the original language scores poorly, but runs quickly.

Background	Topic labeling	Approaches	Results	Acknowledgements
	00000	000000	O	•
Acknowledgements				

This research is supported by DARPA's program LORELEI, Low Resource Languages for Emergent Incidents.