
Resonant Processing of Instrumental Sound Controlled by
Spatial Position

Camille Goudeseune
Integrated Systems Laboratory,

University of Illinois at
Urbana-Champaign

Urbana, IL 61801 USA
+1 217.244.9662

cog@uiuc.edu

Guy Garnett
Integrated Systems Laboratory,

University of Illinois at
Urbana-Champaign

Urbana, IL 61801 USA
+1 217.244.0592
garnett@uiuc.edu

Timothy Johnson
School of Music,

University of Illinois at
Urbana-Champaign

Urbana, IL 61801 USA
+1 217.333.1712

tejohnso@uiuc.edu

ABSTRACT
We present an acoustic musical instrument played through
a resonance model of another sound. The resonance model
is controlled in real time as part of the composite instru-
ment. Our implementation uses an electric violin, whose
spatial position modifies filter parameters of the resonance
model. Simplicial interpolation defines the mapping from
spatial position to filter parameters. With some effort,
pitch tracking can also control the filter parameters. The
individual technologies – motion tracking, pitch tracking,
resonance models – are easily adapted to other instru-
ments.

Keywords
multidimensionality, control, resonance, pitch tracking

INTRODUCTION
The eviolin is an electric violin augmented in several
ways. A Linux PC tracks the violin’s pitch, amplitude,
spectral brightness, and position/orientation of violin body
and bow. The signal picked up at the violin’s bridge is
processed through a filter network running on a Macin-
tosh, allowing for a range of processing from subtle to ex-
treme with several degrees of freedom. Sound is rendered
with a consumer-electronics approximation to a spherical
loudspeaker, to better blend with other instruments in an
ensemble.

SOUND PROCESSING WITH RESONANCE MODELS
The filter network is implemented in Opcode Max using
CNMAT’s resonance model object [3]. It essentially lets
the performer play the violin “through” a tubular bell,
double bass body, piano string, or artificial resonator.
Each resonance model consists of a set of resonances, or
filters. Each filter has a gain, center frequency, band-

width, and decay time. Bandwidth is coupled to decay
time: wide bandwidths have short decay times and vice
versa. Tracking data from the Linux PC modulates the
filters in real time. This communication between the Linux
PC and the Macintosh uses the OpenSound Control (OSC)
network protocol [7].

Controlling gain
It is essential to control the overall gain from the signal at
the bridge of the violin to the loudspeaker’s output. The
instrument feels wrong if it gets suddenly louder without a
corresponding change of bowing, or if it refuses to get
louder no matter how strongly the bow is played. Gain
control is tricky because the filters sometimes block all
frequencies present in the bridge signal, and at other times
excessively boost them. In early experimentation we found
it useful to add to the resonance model’s input some white
noise, scaled by the violin’s own amplitude.

The simplest gain control comes from scaling the output
signal to follow the bridge signal. The bridge signal goes
to MSP’s avg~ object [2], which measures the average sig-
nal amplitude 130 times per second. (130 Hz is the lowest
frequency of this five-string violin; we need a time win-
dow at least as long as a full period of this lowest fre-
quency to accurately measure average amplitude). This
signal level is sent to MSP’s normalize~ object [2] to scale
the output of the filter bank.

As is well known, resonances with high Q cause problems
with gain control: the output signal becomes suddenly
louder if one of the partials of the input signal lines up
with such a resonance (either because the violinist changed
pitch, or because the resonance changed due to movement
of the violin). We therefore avoid such narrow resonances.

Some resonance models come from pitched sources like
tubular bells or notes played on a piano. We have tried
scaling such resonance models to match the violin’s
tracked pitch. At present, pitchtracking latency sometimes
causes objectionable artifacts as the filters swoop to new
values after a transition between two notes.

TRACKING PITCH AND SPATIAL POSITION
Tracking of pitch, amplitude, and spectral centroid is done
with a modified MSP fiddle~ object [5] running in the
sound synthesis package VSS [1]. (The spectral centroid
is computed from the energy in individual partials, once
pitch tracking has determined the sound’s fundamental
frequency.) Motion tracking is done with the Ascension
SpacePad, a device which measures the position of sensors
relative to an antenna emitting a time-varying magnetic
field. One sensor is fastened to the back of the violin body;
the other is sewn onto a fingerless glove worn on the vio-
linist’s bow hand (figure 1). The fiddle~ object therefore
measures 3 dimensions, while the SpacePad measures 12
more (two sensors each measuring x, y, z, yaw, pitch, and
roll).

VSS can be used to synthesize sound directly, but in this
application it just sends the tracking data to the Macintosh,

via a protocol implemented in OSC. Messages which the
Macintosh sends include commands to open and close
a connection, and commands to request certain kinds
of data at certain rates. For example, the command
“/ViolinControl/Param/Amplitude 30” causes VSS to re-
port the current amplitude of the bridge signal every 30
msec; “/ViolinControl/Param/Z 100” reports the current Z-
coordinate every 100 msec. A value of zero in such a
command causes VSS to report that datum as fast as possi-
ble, typically every 3 to 10 msec; a negative value halts
the reporting. This reporting is done with OSC messages
of the same name: VSS sends “/ViolinControl/Param/Z
0.3” back to the Macintosh to indicate a Z-value of 0.3. In
essence, the Linux PC is an “eviolin server”, analogous to
a web server presenting real-time data; the Macintosh is a
client which connects to this server.

Figure 1. The eviolin and motion-tracking antenna. Photograph by Bill Sherman.

MAPPING TRACKED DATA TO FILTER PARAMETERS
The latitude and longitude of the violin is mapped to tim-
bre roughly according to perceptual dimensions: spectral
brightness (relative prominence of higher partials) varies
with latitude, spectral richness (number of partials) with
longitude. Though a third timbral dimension could be di-
rectly controlled with altitude, we have found extended
playing at nonstandard altitudes to be fatiguing. Instead,
we use altitude to control other things – a toggle switch
such as an octave switch, or a continuous scaling factor for
something like amount of reverbation. In the latter case, it
is often convenient to use not the current altitude but
rather the lowest altitude so far, so the violinist can dip
and return to a more comfortable altitude; raising the vio-
lin above normal altitude resets the running minimum.

This mapping from position to timbre begins with a dis-
crete pointwise map from R2, the space of (latitude, longi-
tude) to Rn, the space of filter parameters. This pointwise
map is then extended to a continuous map on all of R2 by
means of simplicial interpolation, as follows. First the set
of points in R2 is triangulated to form a simplicial complex
(triangular mesh). This induces a corresponding sim-
plicial complex in Rn. Finally, a simplicial mapping is
defined between the two complexes, identifying corre-
sponding simplices (triangles), and identifying points in
such simplices with equal barycentric coordinates [4].

Figure 2. Quasi-spherical loudspeaker configuration
for the eviolin.

We compute the approximate position of the violin’s bow
by subtracting bow position from violin position (vector
subtraction). Bow speed is computed by subtracting this
value from the value measured a moment earlier.

LOUDSPEAKER DESIGN
The loudspeaker arrangement is based on the Sirocco
Crossfire system, intended for computer video games. It
consists of a five-channel amplifier, a subwoofer, and four
small “satellite” speakers (figure 2). The satellites are ep-
oxied together to fire outwards from a point, in tetrahedral
configuration; this loudspeaker-molecule sits on a 30 cm
wooden column above the subwoofer. We find this to be
an inexpensive yet effective version of the spherical loud-
speakers used by Trueman [6].

ACKNOWLEDGMENTS
Michael J. Lang implemented the first version of the Max
patch and the resonance models. Matt Wright graciously
helped us with OSC debugging. We particularly thank
Chad Peiper for rehearsing and performing compositions
for the eviolin on numerous occasions.

REFERENCES
1. Bargar, R., I. Choi, S. Das, C. Goudeseune. Model-

Based Interactive Sound for an Immersive Virtual En-
vironment, in Proc. 1994 Intl. Computer Music Conf.
San Francisco: Computer Music Association, 471-474.

2. Cycling ’74. MSP Product Description.
http://www.cycling74.com/products/msp.html.

3. Freed, A. Musical Applications of Resonance Models.
http://cnmat.cnmat.berkeley.edu/CAST/Server/timbralp
rotos.html#resonance_proto.

4. Garnett, G., C. Goudeseune. Performance Factors in
Control of High-Dimensional Spaces, in Proc. 1999
Intl. Computer Music Conf. San Francisco: Computer
Music Association, 268-271.

5. Puckette, M. Real-time audio analysis tools for Pd and
MSP, in Proc. 1998 Intl. Computer Music Conf. San
Francisco: Computer Music Association, 109-112.

6. Trueman, D., P. Cook. BoSSA: the deconstructed vio-
lin reconstruced, in Proc. 1999 Intl. Computer Music
Conf. San Francisco: Computer Music Association,
232-239.

7. Wright, M. OpenSound Control.
http://cnmat.cnmat.berkeley.edu/OSC/.

