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Abstract. Automatic speech recognition (ASR) can be deployed in
a previously unknown language, in less than 24 h, given just three
resources: an acoustic model trained on other languages, a set of
language-model training data, and a grapheme-to-phoneme (G2P) trans-
ducer to connect them. The LanguageNet G2Ps were created with the
goal of being small, fast, and easy to port to a previously unseen lan-
guage. Data come from pronunciation lexicons if available, but if there
are no pronunciation lexicons in the target language, then data are gener-
ated from minimal resources: from a Wikipedia description of the target
language, or from a one-hour interview with a native speaker of the lan-
guage. Using such methods, the LanguageNet G2Ps now include simple
models in nearly 150 languages, with trained finite state transducers in
122 languages, 59 of which are sufficiently well-resourced to permit mea-
surement of their phone error rates. This paper proposes a measure of
the distance between the G2Ps in different languages, and demonstrates
that agglomerative clustering of the LanguageNet languages bears some
resemblance to a phylogeographic language family tree. The Langua-
geNet G2Ps proposed in this paper have already been applied in three
cross-language ASRs, using both hybrid and end-to-end neural architec-
tures, and further experiments are ongoing.

Keywords: Grapheme-to-phoneme transducers · Cross-language
speech recognition · Automatic speech recognition · Under-resourced
languages

1 Why IPA?

Imagine a small group of community organizers, trying to develop a spoken dialog
system for the speakers of their language, using an open-source cross-language
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portability app. The first thing they might do is record examples of a few key
words. If their language has a writing system (about 4000 languages do [17]),
or if they have invented one [1], then they might write each word as they say
it, expecting the app to use the same orthography to transcribe their speech
in the future. The app creates an internal pronunciation model for each word,
and reads the words back to them. After correcting its mistakes, they test it by
narrating a few stories.

Such an app does not yet exist. Although the technologies necessary to cre-
ate it are currently available, their error rates are still too high for casual uses.
These technologies are, essentially, cross-linguistic automatic speech recognition
(ASR) and cross-linguistic text-to-speech synthesis (TTS): ASR and TTS mod-
els that can be trained on several well-resourced languages, and then applied or
adapted to a never-before-seen target language on the basis of one or two pro-
nunciations, each, of a few dozen words. Every existing ASR or TTS paradigm
with the potential to be applied, in such a scenario, uses the phone symbols of
the international phonetic alphabet (IPA) [28] to organize the various sources
of knowledge that need to be transferred from the training languages to the
test language. This article discusses methods for converting text (graphemes) to
phonemes (grapheme-to-phoneme transduction, or G2P) in a manner that can
be extended to a previously unseen language in a few minutes using data that
is usually available on Wikipedia or in elementary grammar primers.

The IPA is designed based on two key principles, which we might call the
distinctive feature principle and the linguistic principle. The distinctive feature
principle insists that IPA symbols should not be viewed as atomic, but rather,
as “shorthand ways of indicating certain intersections of. . . natural classes of
sounds that operate in phonological rules and historical sound changes” [34].
The interpretation of IPA phones as intersections of “distinctive features” (to
use Ladefoged’s term [34]) permits us to generalize from phones that we have
seen (in one of the training languages) to novel phones (in the test language)
by interpolating in the feature space [13], or by simply copying the acoustic
parameters of an IPA phone from the training languages to the test language [51].

The linguistic principle, by contrast, limits the granularity with which the
symbols of the IPA may sample distinctive feature space, by insisting that “the
sounds that are represented are primarily those that distinguish one word from
another” in at least one language [34]. The phonemes of any given language
are the sounds that distinguish one word from another; the IPA phone symbols
are intentionally designed to have only the granularity necessary so that every
language’s phoneme inventory can be written as a list of phones. The symbols of
the IPA are therefore a “summary of agreed phonetic knowledge” [34] that can
usefully prevent us from trying to model acoustic variability that is so small, or
so context-dependent, that it never distinguishes words in any known language.

Because of the benefits of the distinctive feature principle and the linguistic
principle, most cross-linguistic knowledge transfer, for speech technology appli-
cations, makes use of units that are indexed by IPA phones. Typically, acoustic
spectra are clustered to form fenones [5], or triphone states are clustered to form
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senones [26] or projected onto a bottleneck feature space [21], each of which is
considered to be the refinement of an IPA phone category. When speech tech-
nology needs to be rapidly developed in a previously unstudied language, some
sort of knowledge-guided [51] or unsupervised [58] method is used to determine
which of the IPA phones it should use. Models of those phones (including their
component fenones, senones, bottleneck features, or Gaussian modes [31]) are
then adapted from the training languages to the test language.

2 Related Research

Rule-based grapheme-to-phoneme transducers are as old as writing; for example,
the Ashtádhyáyi of Páṅini is a sequence of context-dependent rules specifying
the relationship between the grapheme sequence and the phoneme sequence of
Sanskrit [55]. Prior to 1960, ASR used either whole-word models [12] or isolated
phone models [16]. In 1961, Hughes used a pronunciation lexicon (a table match-
ing the graphemic form of each word to its phonemic form) to measure phone
error rate [25], and Peterson proposed using a similar table to automatically
map recognized phone strings to recognized words [45]. A proposal to deal with
out-of-vocabulary words by decomposing them into component graphemes and
digraphs was published in 1963 [33], and the name “grapheme-to-phoneme trans-
lation” was given to this process in 1969 [35]. Weighted finite state transducers
(WFSTs) for grapheme-to-phoneme translation were proposed in 1991 [20]. The
joint-sequence modeling approach was proposed in [6], and refined in the software
toolkit Phonetisaurus [42].

G2P transducers were developed for most of the languages of Europe in
the 1970s and 1980s; G2Ps for Dutch, English and German were tested in
the same speech synthesis system in 1988 [53]. WFST G2Ps were trained for
seven languages in 1996 [47], and for 85 languages in 2016 [14]. The latter was
tested on a 292-language corpus, which was further used to train a 311-language
neural sequence-to-sequence G2P [44]. Apparently none of these efforts have
been released as open source, but the 61-language rule-based open-source G2P
epitran [40] is available at https://github.com/dmort27/epitran.

3 Training and Testing the G2Ps

This article introduces the LanguageNet G2P transducers, available under an
MIT Open Source License from https://github.com/uiuc-sst/g2ps/. At the date
of this writing, lookup tables for the most common graphemes and digraphs,
derived from Wikipedia descriptions, are available for 142 languages. The dataset
includes WFST transducers that have been trained and tested in Phoneti-
saurus [42] for 122 of these languages, using additional sources of data described
below.

https://github.com/dmort27/epitran
https://github.com/uiuc-sst/g2ps/
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Table 1. In languages with no available pronunciation lexicon, G2Ps were trained
using descriptions of their orthography copied from Wikipedia. Left: a copy of six lines
from the table on the Wikipedia page, “French orthography.” Right: lines from the
table at left, reformatted into a simplified partial-word pronunciation lexicon that can
be used to train a G2P.

Major Examples of

Spelling value (IPA) major value

ç /s/ ça, garçon, reçu

c before e, i, y /s/ cyclone, loquace, ciel

elsewhere /k/ cabas, crasse, lac

cc before e, i, y /ks/ accès

elsewhere /k/ accord

ch /S/ chat, douche

ç s

ce s @

ci s i

cy s i

c k

cce k s @

cc k

ch S

3.1 Data Collection

Three sources of data were used to train G2Ps in this article: Wikipedia symbol
tables, LanguageNet open-source mined lexicons, and commercial lexicons.

The first source of data used to train the LanguageNet is a set of letter-to-
sound rules, for each language, mined from Wikipedia. Wikipedia symbol tables
were mined for each language by searching for entries of the form “<language>
orthography” or “<language> alphabet.” HTML tables on Wikipedia were refor-
matted into partial-word dictionaries, as shown in the last two columns of
Table 1. Tables on Wikipedia do not provide information about letter-to-sound
probabilities, but they often provide information about context: contexts are
encoded as explicit digraphs and trigraphs (e.g., <ce,ci,cy,cce,cc,ch> in Table 1),
while the unigraph entry (<c>→/k/ in Table 1) expresses the “elsewhere” case
from the table on Wikipedia.

The second source of data used to train the LanguageNet is a set of pronuncia-
tion lexicons, mined incidentally during the collection of Rolston and Kirchhoff’s
master lexicon files (masterlex) [49]. The masterlexes are a set of bilingual trans-
lation dictionaries, mapping words from 103 non-English languages into their
English near-equivalents. The data were mined semi-automatically from sources
including Blench [7], Chaihana [19], Sözlük [11], IATE [27], wiktionary, ICD [48],
OMWN [8], Panlex [29], TaaS [2], and a number of LDC sources. Each word, in
each of the 103 source languages, is tagged with up to 11 attributes, depending
on the type of information provided by the original data source: orthography,
lemma, part of speech, transliteration, pronunciation, English translation, score,
dialect, domain, data source, and morphological variants. Fields were populated
only if a source provided the relevant information, and some fields were not use-
fully populated by any source. The pronunciation field was populated in about
half of the available sources (40 out of 103). Entries with a pronunciation were
used to train G2P transducers.
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Finally, data from a number of other sources were used to train the G2P mod-
els. The Gulf Arabic model was trained using the Qatari Arabic Corpus [18],
available at http://ifp-08.ifp.uiuc.edu/public/QAC/. Masterlex data on Ger-
man, Dutch, and English were augmented with data from CELEX [4]. LDC
corpora from BABEL and CALLHOME were also used to train G2Ps in the 24
BABEL languages, and in three of the CALLHOME languages.

3.2 Training the FSTs

Grapheme-to-phoneme finite state transducers (G2P FSTs) have been trained
and tested thus far in 122 languages, using the Phonetisaurus [42] toolkit.

Phonetisaurus is based on graphone language modelling [6]. A graphone is
defined to be an alignment between a sequence of graphemes and a sequence
of phonemes. For example, the longest graphone in Table 1 is the trigraph-
to-triphone alignment <cce>:/ks@/. Phonetisaurus does not permit 3-to-3 gra-
phones of the form <cce>:/ks@/; instead, it requires each graphone to be either
an s1-to-1 or a 1-to-s2 alignment, for s1 ≤ S1 and s2 ≤ S2, where S1 and S2 are
user-defined parameters. Training proceeds as follows:

1. For each word in the lexicon, an initial graph of candidate alignments is
created. The initial alignment graph contains all possible alignments of s1
graphemes to one phoneme, and all alignments of one grapheme to s2 pho-
nemes, for s1 ≤ S1 and s2 ≤ S2. All such graphones are initially given equal
probability.

2. Several iterations of the expectation maximization (EM) algorithm are used
to re-estimate the probability of every graphone. After EM re-estimation,
the Viterbi algorithm is used to compute the maximum likelihood graphone
sequence for each word in the dictionary, which is printed out as training data
for a graphone language model.

3. A graphone N-gram language model is trained using Kneser-Ney backoff [30],
where the context length, N , is a user-specified parameter. The fully trained
language model is then compiled into FST form using methods described
in [3].

Language model backoff arcs prevent the FST from assigning zero probability
to any sequence of known graphones. For example, if the graphone <ough>:/u/
occurs in the training lexicon only at the end of a word, then the learned lex-
icon can compute the test analysis <throughput>:/TrupUt/ only by following
a backoff arc from the end-of-word state to the start-of-word state, then fol-
lowing the unigram arc <p>:/p/. For this reason, it is possible to treat the
Wikipedia symbol tables as if they were pronunciation lexicons; Phonetisaurus
learns the mappings listed there, and learns backoff weights that permit them
to be sequenced in any novel word.

Source data files (including Wikipedia, masterlex, and other sources) for
each language were divided between training, development test, and evaluation
test. Wikipedia symbol tables were assigned, in their entirety, to the training

http://ifp-08.ifp.uiuc.edu/public/QAC/
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set. Other sources were divided: out of every five sequential entries, three were
assigned to training, one to development, and one to evaluation. Graphone lan-
guage models were trained using all hyperparameters in the range S1 ∈ {2, 3, 4},
S2 ∈ {2, 3, 4}, N ∈ {1, 2, 4, 8}. Combinations with the lowest error rate on the
development test set were then evaluated using the evaluation test set. Mod-
els were also trained, but not tested, for languages with no data source other
than the Wikipedia symbol table (e.g., because the masterlex file contained no
pronunciations) using the hyperparameters S1 = 2, S2 = 2, N = 2.

3.3 Testing the FSTs

Fig. 1. Phone error rate of trained grapheme-to-phoneme transducers, as a function of
the number of training words, for 59 languages. Each language is indicated by its ISO
639-3 code.

Figure 1 shows phone error rate (PER) on the evaluation test set, as a function of
the number of training entries (NTE), for the 59 languages that have evaluation
test data. Languages are labeled by their ISO 639-3 codes. PER is generally
a decreasing function of NTE: the figure shows the line of best fit in log-log
space, log10(PER) = −0.28 log10(NTE)+1.7. The figure shows some languages
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with extremely high PER, and some with extremely low PER. Post-hoc analysis
suggests that most outliers are explained by one of two causes.

First, data sparsity: some of the languages with the highest PER are lan-
guages with complex grapheme systems, whose training datasets are insufficient
to represent all of the characters in the orthography. The most obvious such
example is Wu Chinese (ISO 639-3: wuu), which has a 90% PER. The training
data contains almost 200 Chinese characters, and their phonetic pronunciations;
none of the characters in the test dataset are in the training dataset. Similarly,
Tamazight (zgh) includes both Latin and Tifinagh characters, Burmese (mya)
includes both Latin and Burmese characters, and Hmong Dô (hmv) includes a
variety of Latin-coded lexical tones, all of which result in a low degree of overlap
between the training and test datasets.

Second, label noise: some of the pronunciation lexicons used as training mate-
rial were apparently created not by humans, but by rule-based G2P transducers
from the provided orthography. Automatically generated reference pronuncia-
tions result in unrealistically low or unrealistically high PER, depending on
whether the distributed data include just one pronunciation per word (e.g.,
Azerbaijani (aze), Hausa (hau), and Russian (rus)), or two to three alternate
pronunciations per word (Igbo (ibo), Tok Pisin (tpi) and Tagalog (tgl)). All of
these G2Ps might be useful in a real application, but there is no way to be sure,
because the evaluation test corpora were apparently constructed from the same
algorithms as the training corpora.

Data sparsity and label noise seem to have less influence on the languages
near the regression line. There is reason to believe, therefore, that the phone error
rate of a G2P is reasonably well modeled as 101.7−0.28 log10(NTE) ≈ 50/ 3.5

√
NTE.

4 Applications

The LanguageNet G2Ps were designed for zero-resource speech technology appli-
cations, e.g., for the purpose of deploying automatic speech recognition in a lan-
guage for which no training data exist. Sections 4.2 and 4.3 describe two such
systems. Section 4.1 explores the information the G2Ps have learned, by clus-
tering the languages of the world according to a novel G2P distance proposed
here.

4.1 Clustering Languages Based on Their G2Ps

A language family is a group of languages whose “divergent development. . . does
not completely obscure the fact that these languages are descended from a com-
mon source” [23]. Comparative linguistics attempts to reconstruct the ancestral
language by the analysis of regular relationships among word forms and syn-
tax. In particular, the pronunciations of words change gradually over time, in
a manner that “is remarkably regular. . . This fact is, of course, a great boon to
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historical linguists, since it makes the job of tracing linguistic forms through
history much easier” [23]. By studying sound change in particular, one can not
only reconstruct the ancestral language shared by two modern languages, but
also estimate how many centuries have passed since they diverged, resulting
in phylogeographic language family trees that can be used to infer the move-
ments of peoples in prehistoric times [9,32] or that, conversely, may need to
be modified or dissolved in the face of new scholarship [37]. Unlike pronunci-
ation, though, graphemes often change in step discontinuities. Often, multiple
scripts co-exist, but a government decision may suddenly cause documents in
one particular script to become far more common, sometimes with the inten-
tion of promoting collaboration with a specified international community. Strik-
ing recent examples include the adoption of the Latin script for Turkish [24],
Malay [43], and Uzbek [52], of Cyrillic for Kazakh and Kirghiz, and of the Ara-
bic script for Uighur [38]. These considerations suggest the following hypothesis:
The G2P transducers for two languages produce similar pronunciations, for any
given written form, if the two languages are part of the same language family
and use the same script, or if the two languages have both recently adapted their
orthography from a common international origin.

Phonetisaurus trains G2Ps so that the cost of any given path is the joint
probability of the orthographic word w and its pronunciation π, so the G2P
defines a joint probability mass function p(w, π) over the set of all possible
word-pronunciation pairs. The distance between two G2Ps p and q can usefully
be defined as the expected distance between the pronunciations π and ρ that
they produce in response to the same orthographic form w, averaged over the
orthographic forms of both languages:

DG2P (p, q) =
1
2 E

p(w,π)q(ρ|w)
[DPRON (π, ρ)] +

1
2 E

q(w,π)p(ρ|w)
[DPRON (π, ρ)] (1)

The distance between two pronunciations should be proportional to the string
edit distance between their phone strings π = {π1, . . . , πK} and ρ = {ρ1, . . . , ρL}.
String edit distance is symmetric if deletion and insertion are treated identically
as the pairwise phone distances DPH(πk, ∅) = DPH(∅, ρl) = 1 between any
non-null phone symbol, πk or ρl, and the null-phone symbol ∅. Let IM (π) be an
operator that inserts M −K copies of the null phone between the elements of π,
resulting in a string π̃ = {π̃1, . . . , π̃M}. Then the normalized string edit distance
can be written:

DPRON (π, ρ) =
1

max(K,L)
min
M

min
π̃=IM (π)

min
ρ̃=IM (ρ)

M∑

m=1

DPH(π̃m, ρ̃m) (2)

Normalization by max(K,L) guarantees that 0 ≤ DPRON (π, ρ) ≤ 1 if and only
if 0 ≤ DPH(πk, ρl) ≤ 1 for each pair of phone symbols (πk, ρl).
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Ladefoged defines the distinctive features to be “natural classes of sounds
that operate in phonological rules and historical sound changes” [34]; more pre-
cisely, historical sound changes tend to modify only a few of the distinctive
features of a sound, while leaving the remainder unchanged. PHOIBLE [39]
defines 37 distinctive features for 2908 different phones, including both simple
phones (composed of a single IPA character, possibly with diacritics) and com-
plex phones (composed of one or more IPA symbols in sequence, e.g., affricates
and diphthongs). Possible values of each feature include the symbols [+], [−],
blank (feature unspecified), and a variety of feature contours. For example, the
dipthong /aI/ has the height feature [−+], meaning that the tongue moves from
a [−high] position to a [+high] position. LanguageNet augments these 37 fea-
tures with 8 features that can be easily specified for lexical tone sequences in
all of the LanguageNet languages, and that are unspecified for all non-tonal
IPA symbols: 4 tone height features (topTone, highTone, lowTone, bottomTone)
and 4 tone contour features (riseTone, fallTone, hatTone, dipTone). The con-
catenation of the segmental and tonal features yields a total of D = 45 distinc-
tive features per phone. Let each phone πk be a vector of such feature values,
πk = [f1(πk), . . . , fD(πk)]. Then

DPH(πk, ρl) =
1
D

D∑

d=1

1 (fd(πk) �= fd(ρl)) (3)

where 1() is the unit indicator function.
The 122 Phonetisaurus G2Ps of the LanguageNet were agglomeratively clus-

tered, using nearest-centroid agglomeration [15], resulting in a complete binary
phylogenetic tree over all of the 122 languages.1 Expectations in Eq. 1 were
approximated by selecting up to 1000 orthographic words from each of the two
languages. Normalizations in Eq. 2 and 3 guarantee that the distance between
any pair of languages is 0 ≤ DG2P ≤ 1. The distance at which any pair of
clusters are merged is therefore an intuitively meaningful measure of the family
relationship between the two languages. If two languages use completely differ-
ent character sets (for example, one uses Cyrillic characters and one uses Arabic
characters), then the G2P of one language is completely unable to process words
from the other language, resulting in a distance very close to DG2P (p, q) ≈ 1.
On the other hand, if the two languages produce very similar pronunciations in
response to the same orthographic string, then the distance between their G2Ps
is DG2P (p, q) ≈ 0.

1 The complete tree is at github.com/uiuc-sst/g2ps/blob/master/g2ppy/cluster/agglo
merative cluster output 2020-07-18.txt.

https://github.com/uiuc-sst/g2ps/blob/master/g2ppy/cluster/agglomerative_cluster_output_2020-07-18.txt
https://github.com/uiuc-sst/g2ps/blob/master/g2ppy/cluster/agglomerative_cluster_output_2020-07-18.txt
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Table 2. Agglomerative clustering results: Clusters with internal distance DG2P ≤
0.2. Numbers between rows show the distance separating the two clusters. Languages
separated from the nearest cluster by DG2P > 0.2 are not shown. Dashed horizontal
lines indicate an inter-cluster distance of DG2P > 0.4; solid horizontal lines indicate
an inter-cluster distance of DG2P > 0.8. Parentheses show the agglomerative structure
within each cluster.

Malayo-Polynesian, Bantu, (((((((Sundanese, Malay), Indonesian), Luba-Lulua),
Indo-Aryan: Kongo), Shona), Rohingya), Kinyarwanda)

0.202
Cushitic, Polynesian: ((Somali, Oromo), Fijian)

0.311
Polynesian: (Samoan, Tonga)

0.441
Tahitic: (Rarotongan, Maori)

0.404
Finnic, Germanic: ((Estonian, Finnish), Danish)

0.873
South Slavic: ((Serbian, Bosnian), Macedonian)

0.958
Iranian: (Dari, Persian)

Table 2 shows all of the clusters that were merged at levels of DG2P ≤ 0.2.
Other languages that joined each of these clusters at levels of DG2P > 0.2 are
not shown in the table, but the maximum distance threshold separating each
pair of clusters is shown as a three-digit floating point number separating the
corresponding rows. Several observations are salient.

– Each cluster is composed primarily, but not exclusively, of members of the
same language family: Sundanese, Malay, and Indonesian are members of the
Malayo-Polynesian family, while Dari and Persian are members of the Iranian
family.

– Neighboring clusters tend to be from related language families. For example,
Malayo-Polynesian, Polynesian, and Tahitic languages are spread across the
first four clusters.

– Recent history sometimes trumps family relationships: the Danish G2P is
similar to those of Estonian and Finnish, despite the lack of any family rela-
tionship.

– Script differences are marked by large inter-cluster distances, of DG2P = 0.873
between the languages that use Latin vs. Cyrillic characters, and of DG2P =
0.958 between those that use Cyrillic vs. Arabic characters. These distances
are less than 1.0 only because some of the source dictionaries, in the Slavic
and Iranian clusters, include small numbers of Latin-spelled words.

– Not all cluster results are well explained by family or historical relation-
ships among languages. The largest cluster includes three Malayo-Polynesian
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languages, four Bantu languages, and an Indo-Aryan language. These three
language families share no common history, except that all eight languages
have, during the twentieth century, developed national standards based on
the Latin alphabet.

4.2 ASR24

By converting script into IPA phone symbols, one can build an ASR in a pre-
viously unknown language in about two hours. The ASR24 [22] cross-language
ASR toolkit was built and tested for a number of such experiments. It was
designed to solve the problem of recognizing speech in a language for which we
have monolingual speech samples, monolingual texts (usually including a highly
skewed assortment of religious texts and technical manuals, quickly but incom-
pletely normalized), but no transcribed speech.

Without transcribed speech one cannot train an acoustic model. Therefore
ASR24 uses pretrained acoustic models, from the English-language ASpIRE
model [54] distributed by the maintainers of the Kaldi toolkit [46]. The phone
set of the ASpIRE recognizer was mapped to IPA, so that its acoustic models
can be appropriated for use in any language.

The target language’s G2P is created by reformatting the Wikipedia descrip-
tion of its alphabet, and then running Phonetisaurus, as described in Sect. 3.2.
If the target language lacks a Wikipedia description (as for Ilocano, at the time
of the experiments described here), then its G2P is initialized using its closest
related language in LanguageNet, and then refined on the basis of one hour of
interaction with a paid native speaker of the target language. If the language’s
character set is not in LanguageNet, and if its Wikipedia description lacks some
characters (e.g., Odia), then a symbol table is created from scratch, by asking a
paid native speaker consultant to read each of the characters, and by transcribing
that speech into IPA.

Test data are collected from an additional five hours of interaction with a
paid native speaker consultant. The native speaker is asked to read texts in the
target language. Although these texts are not sufficient to train the acoustic
model, they are useful for estimating word error rate (WER). Available texts
are divided into those used to train the language model (LM), and those read
by the native speaker consultant as test material.
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Table 3. Cross-language ASR experiments on seven languages. Models = salient
details of LM or G2P (Trigram LM = from raw text, Alt LM = includes Brown clus-
ters, clean = remove Bible stopwords and non-standard text, better truecasing, separate
language-specific apostrophized affixes, Gaz = include words from a gazetteer of rele-
vant place names). Train time = time required to clean monolingual text and train
a language model (2 h and 8 h were maximum permitted wall-clock times, including
data cleaning; some systems required less training time). Build time = wall-clock
time required to compose LM with acoustic model (measured only for the first LM
in each language). Transcribe speed = minutes of transcribed speech per minute of
computation (measured only for the first LM in each language). WER = word error
rate.

Language Models Train Build Transcribe WER

Time (h) Time (min) Speed (×RT)

Somali Trigram LM 2 90 7 93.45%

Alt LMs, clean 8 84.58%

Hindi Trigram+Gaz LM 2 25 20 95.09%

Alt LMs, clean 8 93.71%

Zulu Trigram+Gaz LM 2 60 20 108.26%

Alt LMs, clean 8 90.22%

Sinhala Trigram LM 2 67 25 92.4%

Alt LMs, clean 8 93.5%

Kinyarwanda Trigram LM 2 76 23 88.1%

Alt LMs, clean 8 87.1%

Odia Trigram+Gaz LM 2 20 20 98%

Alt LMs, clean 8 106%

Ilocano Tagalog G2P+Trigram 2 30 20 93%

Ilocano G2P+Trigram 2 88%

Alt LMs+Gaz, clean 8 77%

Experiments using this setup were performed for seven languages, five
whose G2Ps were already in LanguageNet (Somali, Hindi, Zulu, Sinhala, and
Kinyarwanda) and two that were not (Odia and Ilocano). Results are shown in
Table 3. In all cases, build time (composition of the LM with the acoustic model)
took 25 to 90 min, and transcription of novel audio was performed 20× faster
than real time. Two checkpoints are listed. Checkpoint 1 used a trigram LM
(trained in less than two hours). Checkpoint 2 used a class-based LM (if it gave
lower perplexity than a trigram) trained after data cleaning (removing Bible
stopwords, improved truecasing and sentence segmentation, separate language-
dependent apostrophized function words from their neighbors). Word error rates
(WER) are still quite high, but for the most part, they reduce substantially as
a result of the six hours of extra modeling effort and data cleaning that were
undertaken between checkpoints 1 and 2.
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4.3 Discophone

End-to-end neural cross-language ASR experiments using LanguageNet’s G2Ps
were reported in [58] and [36]. In [58], speech recognizers were trained and tested
using a transformer [56] sequence-to-sequence neural network implemented using
the ESPnet [57] framework. In [36], speech recognizers were trained and tested
using a listen, attend and spell architecture [10], implemented in the Dynet
XNMT framework [41]. Speech included transcribed speech data from thirteen
languages: five from the GlobalPhone distribution [50] (Czech, French, Spanish,
Mandarin and Thai), and eight from the BABEL distribution (Cantonese, Ben-
gali, Vietnamese, Lao, Zulu, Amharic, Javanese, and Georgian). The training
subsets for each language varied from 11.5 h (Spanish) to 126.6 h (Cantonese).
Training data transcriptions for 13 languages were converted to IPA using Lan-
guageNet G2Ps. In [58], data were used to train three sets of speech recognizers
per language: monolingual (trained and tested on the train and test subsets of
the same language), multilingual (trained on all languages), and cross-lingual
(trained on all languages except the test language). In [36], monolingual and
multilingual systems were trained on only three tonal languages (Mandarin,
Cantonese, and Vietnamese), and the cross-lingual setting used one hour of tran-
scribed data from the test language (Lao) in order to adapt each recognizer.

An end-to-end phone recognizer, such as those trained and tested in [36,58],
generates a sequence of IPA phone characters, with no further distinction
between simple phones, diacritics, or complex phones. The reported error rate is
therefore a new metric, which was named “phonetic token error rate” (PTER)
in [58]: the string edit distance between the reference and hypothesis IPA char-
acter strings, counting the number of substitutions, deletions, and insertions
of unicode IPA characters. PTER varied considerably among the 13 languages
studied by [58], but in all 13 cases, the multilingual ASR was better than the
monolingual ASR, and the cross-lingual ASR was worse than either. Multilin-
gual PTER ranged from 8.1% (Czech) to 41% (Javanese). Cross-lingual PTER
ranged from 61.7% (French) to 99.7% (again, Javanese).

In general, IPA tone symbols caused problems for the cross-lingual system
in [58]. Mandarin had only 17.2% PTER in the multilingual setting, but had
85.9% PTER in the cross-lingual setting, because of incorrectly generated tones.
Javanese is not a tone language, but most of its errors, in the cross-lingual
setting, came from the incorrect insertion of IPA tone symbols. The problem of
IPA tone symbols was studied in more depth by [36]. Four different models were
considered. In the first model, the neural net was trained to output both phones
and tones on the same output tier, as in [58]. In the second model, tones and
phones were split into separate training and sequences, and the net learned to
generate them on separate output tiers. The third model used all three of the
tiers from models 1 and 2; the fourth model added a fourth tier, containing voice
quality features. The 1-tier system was most successful if phones and tones were
recombined into one stream prior to scoring. If phones and tones were scored



16 M. Hasegawa-Johnson et al.

separately, then the 4-tier model gave lowest error rates multilingually, but the 2-
tier model was superior cross-lingually, suggesting that the simpler model might
generalize better across language boundaries.

5 Conclusions

Creating ASR for all 7000 languages of the world requires methods that rapidly
create a G2P for any new language. The methods proposed here create a G2P
in about an hour, based on data from a standard alphabet table from Wikipedia
or from a one-hour interview with a native speaker. Methods have also been
developed to incorporate larger data sources into the G2P training pipeline,
and have been applied for this purpose in 60 of the languages in the current
distribution. Agglomerative clustering of the resulting G2Ps, using a novel G2P
distance metric proposed here, results in clusters that tend to group together
members of the same language family, with some exceptions. Cross-language
ASRs using the LanguageNet G2Ps have been tested on 19 different languages: 7
using acoustic models trained on only one source language, and 13 using acoustic
models each trained on 3 to 12 source languages (Zulu is in both sets). Word error
rates and phonetic token error rates of cross-language ASR are high; ongoing
research seeks methods that will reduce them.
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